These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 12643700
21. Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties. Xi G, Yu S, Zhang R, Zhang M, Ma D, Qian Y. J Phys Chem B; 2005 Jul 14; 109(27):13200-4. PubMed ID: 16852645 [Abstract] [Full Text] [Related]
22. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. Deng Z, Tang F, Chen D, Meng X, Cao L, Zou B. J Phys Chem B; 2006 Sep 21; 110(37):18225-30. PubMed ID: 16970439 [Abstract] [Full Text] [Related]
23. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Chen ZG, Cheng L, Lu GQ, Zou J. Nanotechnology; 2010 Sep 17; 21(37):375701. PubMed ID: 20714054 [Abstract] [Full Text] [Related]
24. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Paiman S, Gao Q, Tan HH, Jagadish C, Pemasiri K, Montazeri M, Jackson HE, Smith LM, Yarrison-Rice JM, Zhang X, Zou J. Nanotechnology; 2009 Jun 03; 20(22):225606. PubMed ID: 19436086 [Abstract] [Full Text] [Related]
25. Low temperature photoluminescence characteristics of chemically synthesized indium doped zinc oxide nanostructures. Escobedo Morales A, Aceves R, Pal U, Zhang JZ. J Nanosci Nanotechnol; 2008 Dec 03; 8(12):6538-44. PubMed ID: 19205237 [Abstract] [Full Text] [Related]
26. Solution grown ultra-violet emitting quasi-aligned ZnO nanotubes. Park YK, Umar A, Kim SH, Hahn YB. J Nanosci Nanotechnol; 2008 Dec 03; 8(12):6349-54. PubMed ID: 19205205 [Abstract] [Full Text] [Related]
27. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites. Patzke GR, Kontic R, Shiolashvili Z, Makhatadze N, Jishiashvili D. Materials (Basel); 2012 Dec 27; 6(1):85-100. PubMed ID: 28809296 [Abstract] [Full Text] [Related]
28. Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires. Wang G, Park J, Wexler D, Park MS, Ahn JH. Inorg Chem; 2007 Jun 11; 46(12):4778-80. PubMed ID: 17497852 [Abstract] [Full Text] [Related]
29. Selective-area vapour-liquid-solid growth of InP nanowires. Dalacu D, Kam A, Guy Austing D, Wu X, Lapointe J, Aers GC, Poole PJ. Nanotechnology; 2009 Sep 30; 20(39):395602. PubMed ID: 19724116 [Abstract] [Full Text] [Related]
30. Epitaxial growth of silicon nanowires using an aluminium catalyst. Wang Y, Schmidt V, Senz S, Gösele U. Nat Nanotechnol; 2006 Dec 30; 1(3):186-9. PubMed ID: 18654184 [Abstract] [Full Text] [Related]
31. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport. Kuo TJ, Huang MH. J Phys Chem B; 2006 Jul 20; 110(28):13717-21. PubMed ID: 16836315 [Abstract] [Full Text] [Related]
32. Batchwise growth of silica cone patterns via self-assembly of aligned nanowires. Luo S, Zhou W, Chu W, Shen J, Zhang Z, Liu L, Liu D, Xiang Y, Ma W, Xie S. Small; 2007 Mar 20; 3(3):444-50. PubMed ID: 17278164 [Abstract] [Full Text] [Related]
33. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Zardo I, Yu L, Conesa-Boj S, Estradé S, Alet PJ, Rössler J, Frimmer M, Roca I Cabarrocas P, Peiró F, Arbiol J, Morante JR, Fontcuberta I Morral A. Nanotechnology; 2009 Apr 15; 20(15):155602. PubMed ID: 19420550 [Abstract] [Full Text] [Related]
34. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Petersen EW, Likovich EM, Russell KJ, Narayanamurti V. Nanotechnology; 2009 Oct 07; 20(40):405603. PubMed ID: 19738315 [Abstract] [Full Text] [Related]
35. High surface-to-volume ratio ZnO microberets: low temperature synthesis, characterization, and photoluminescence. Lu H, Liao L, Li J, Wang D, He H, Fu Q, Xu L, Tian Y. J Phys Chem B; 2006 Nov 23; 110(46):23211-4. PubMed ID: 17107167 [Abstract] [Full Text] [Related]
36. A simple route to growth of silicon nanowires. Pan H, Ni Z, Poh C, Feng YP, Lin J, Shen Z. J Nanosci Nanotechnol; 2008 Nov 23; 8(11):5787-90. PubMed ID: 19198306 [Abstract] [Full Text] [Related]
37. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Prasad V, D'Souza C, Yadav D, Shaikh AJ, Vigneshwaran N. Spectrochim Acta A Mol Biomol Spectrosc; 2006 Sep 23; 65(1):173-8. PubMed ID: 16458053 [Abstract] [Full Text] [Related]
38. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures. Wang J, Yang Q, Zhang Z, Li T, Zhang S. Dalton Trans; 2010 Jan 07; (1):227-33. PubMed ID: 20023954 [Abstract] [Full Text] [Related]
39. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites. Nedeljković JM, Mićić OI, Ahrenkiel SP, Miedaner A, Nozik AJ. J Am Chem Soc; 2004 Mar 03; 126(8):2632-9. PubMed ID: 14982473 [Abstract] [Full Text] [Related]
40. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. Shen G, Cho JH, Yoo JK, Yi GC, Lee CJ. J Phys Chem B; 2005 Mar 31; 109(12):5491-6. PubMed ID: 16851588 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]