These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 12643810

  • 21. Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair.
    Dardenne LE, Werneck AS, de Oliveira Neto M, Bisch PM.
    Proteins; 2003 Aug 01; 52(2):236-53. PubMed ID: 12833547
    [Abstract] [Full Text] [Related]

  • 22. The interplay of electrostatic fields and binding interactions determining catalytic-site reactivity in actinidin. A possible origin of differences in the behaviour of actinidin and papain.
    Kowlessur D, O'Driscoll M, Topham CM, Templeton W, Thomas EW, Brocklehurst K.
    Biochem J; 1989 Apr 15; 259(2):443-52. PubMed ID: 2719659
    [Abstract] [Full Text] [Related]

  • 23. Comparative resonance Raman spectroscopic and kinetic studies of acyl-enzymes involving papain, actinidin and papaya peptidase II.
    Brocklehurst K, Carey PR, Lee HH, Salih E, Storer AC.
    Biochem J; 1984 Nov 01; 223(3):649-57. PubMed ID: 6391467
    [Abstract] [Full Text] [Related]

  • 24. The pH dependence of pre-steady-state and steady-state kinetics for the papain-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester.
    Ascenzi P, Aducci P, Torroni A, Amiconi G, Ballio A, Menegatti E, Guarneri M.
    Biochim Biophys Acta; 1987 Apr 08; 912(2):203-10. PubMed ID: 3828360
    [Abstract] [Full Text] [Related]

  • 25. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.
    Thomas MP, Topham CM, Kowlessur D, Mellor GW, Thomas EW, Whitford D, Brocklehurst K.
    Biochem J; 1994 Jun 15; 300 ( Pt 3)(Pt 3):805-20. PubMed ID: 8010964
    [Abstract] [Full Text] [Related]

  • 26. Deacylation and reacylation for a series of acyl cysteine proteases, including acyl groups derived from novel chromophoric substrates.
    Doran JD, Tonge PJ, Mort JS, Carey PR.
    Biochemistry; 1996 Sep 24; 35(38):12487-94. PubMed ID: 8823184
    [Abstract] [Full Text] [Related]

  • 27. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics.
    Brocklehurst K, Brocklehurst SM, Kowlessur D, O'Driscoll M, Patel G, Salih E, Templeton W, Thomas E, Topham CM, Willenbrock F.
    Biochem J; 1988 Dec 01; 256(2):543-58. PubMed ID: 3223929
    [Abstract] [Full Text] [Related]

  • 28. Steady-state and pre-steady-state kinetic evaluation of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro cysteine protease: development of an ion-pair model for catalysis.
    Solowiej J, Thomson JA, Ryan K, Luo C, He M, Lou J, Murray BW.
    Biochemistry; 2008 Feb 26; 47(8):2617-30. PubMed ID: 18237196
    [Abstract] [Full Text] [Related]

  • 29. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS.
    LOWE G, WILLIAMS A.
    Biochem J; 1965 Jul 26; 96(1):199-204. PubMed ID: 14346990
    [Abstract] [Full Text] [Related]

  • 30. Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis.
    Berti PJ, Chindemi P.
    Biochemistry; 2009 May 05; 48(17):3699-707. PubMed ID: 19271774
    [Abstract] [Full Text] [Related]

  • 31. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes.
    Schwarz A, Brecker L, Nidetzky B.
    Biochem J; 2007 May 01; 403(3):441-9. PubMed ID: 17233628
    [Abstract] [Full Text] [Related]

  • 32. Actinidin and chymopapain B provide variation in the common electrostatic environment of Glu50 in papain and caricain.
    Reid JD, Pinitglang S, Topham CM, Verma C, Thomas EW, Brocklehurst K.
    Biochem Soc Trans; 1997 Feb 01; 25(1):89S. PubMed ID: 9056987
    [No Abstract] [Full Text] [Related]

  • 33. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ, Bugg TD.
    Org Biomol Chem; 2007 Feb 07; 5(3):507-13. PubMed ID: 17252134
    [Abstract] [Full Text] [Related]

  • 34. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H, Liu L, Hanna PE, Wagner CR.
    Biochemistry; 2005 Aug 23; 44(33):11295-306. PubMed ID: 16101314
    [Abstract] [Full Text] [Related]

  • 35. Crystal structure of a papain-fold protein without the catalytic residue: a novel member in the cysteine proteinase family.
    Zhang M, Wei Z, Chang S, Teng M, Gong W.
    J Mol Biol; 2006 Apr 21; 358(1):97-105. PubMed ID: 16497323
    [Abstract] [Full Text] [Related]

  • 36. Evidence that the carboxy groups of Asp158 in papain and caricain have abnormally low pKa values and thus do not contribute the key ionisations with pKa 4 that generate catalytic competence.
    Noble M, Abramson D, Verma C, Brocklehurst K.
    Biochem Soc Trans; 1997 Feb 21; 25(1):90S. PubMed ID: 9056988
    [No Abstract] [Full Text] [Related]

  • 37. ICE processing and kinetic mechanism.
    Giegel DA.
    J Cell Biochem; 1997 Jan 21; 64(1):11-8. PubMed ID: 9015749
    [Abstract] [Full Text] [Related]

  • 38. The unusual catalytic triad of poliovirus protease 3C.
    Sárkány Z, Polgár L.
    Biochemistry; 2003 Jan 21; 42(2):516-22. PubMed ID: 12525179
    [Abstract] [Full Text] [Related]

  • 39. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a rhodococcus haloalkane dehalogenase.
    Bosma T, Pikkemaat MG, Kingma J, Dijk J, Janssen DB.
    Biochemistry; 2003 Jul 08; 42(26):8047-53. PubMed ID: 12834356
    [Abstract] [Full Text] [Related]

  • 40. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M, Kawai R, Adams JA, Weare JH.
    J Am Chem Soc; 2003 Aug 20; 125(33):9926-7. PubMed ID: 12914447
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.