These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 12655450
1. The quest for microbial reductive dechlorination of C (2) to C (4) chloroalkanes is warranted. De Wildeman S, Verstraete W. Appl Microbiol Biotechnol; 2003 Apr; 61(2):94-102. PubMed ID: 12655450 [Abstract] [Full Text] [Related]
2. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene. Brennan RA, Sanford RA, Werth CJ. Water Res; 2006 Jun; 40(11):2125-34. PubMed ID: 16725176 [Abstract] [Full Text] [Related]
3. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
4. Electron donor availability for microbial reductive processes following thermal treatment. Fletcher KE, Costanza J, Pennell KD, Löffler FE. Water Res; 2011 Dec 15; 45(20):6625-36. PubMed ID: 22048015 [Abstract] [Full Text] [Related]
5. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL. Water Res; 2007 Jan 15; 41(2):355-64. PubMed ID: 17129596 [Abstract] [Full Text] [Related]
6. Degradation of halogenated aliphatic compounds utilizing sequential anaerobic/aerobic treatments. McCue T, Hoxworth S, Randall AA. Water Sci Technol; 2003 Jan 15; 47(10):79-84. PubMed ID: 12862220 [Abstract] [Full Text] [Related]
7. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 15; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related]
8. Dynamics of reductive TCE dechlorination in two distinct H(2) supply scenarios and at various temperatures. Heimann AC, Friis AK, Scheutz C, Jakobsen R. Biodegradation; 2007 Apr 15; 18(2):167-79. PubMed ID: 16570228 [Abstract] [Full Text] [Related]
9. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer. Friis AK, Kofoed JL, Heron G, Albrechtsen HJ, Bjerg PL. Biodegradation; 2007 Dec 15; 18(6):661-74. PubMed ID: 17225076 [Abstract] [Full Text] [Related]
10. Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Kittelmann S, Friedrich MW. Environ Microbiol; 2008 Jun 15; 10(6):1557-70. PubMed ID: 18318716 [Abstract] [Full Text] [Related]
11. Quantifying the effects of fumarate on in situ reductive dechlorination rates. Hageman KJ, Field JA, Istok JD, Semprini L. J Contam Hydrol; 2004 Dec 15; 75(3-4):281-96. PubMed ID: 15610903 [Abstract] [Full Text] [Related]
12. Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Aulenta F, Fuoco M, Canosa A, Petrangeli Papini M, Majone M. Water Sci Technol; 2008 Dec 15; 57(6):921-5. PubMed ID: 18413954 [Abstract] [Full Text] [Related]
13. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. Yu S, Semprini L. J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006 [Abstract] [Full Text] [Related]
14. Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils. Kassenga GR, Pardue JH. FEMS Microbiol Ecol; 2006 Aug 15; 57(2):311-23. PubMed ID: 16867148 [Abstract] [Full Text] [Related]
15. Microbial degradation of chlorinated benzenes. Field JA, Sierra-Alvarez R. Biodegradation; 2008 Jul 15; 19(4):463-80. PubMed ID: 17917704 [Abstract] [Full Text] [Related]
16. Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. Miller TR, Franklin MP, Halden RU. FEMS Microbiol Ecol; 2007 May 15; 60(2):299-311. PubMed ID: 17386036 [Abstract] [Full Text] [Related]
17. Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I. FEMS Microbiol Ecol; 2007 Oct 15; 62(1):98-107. PubMed ID: 17908097 [Abstract] [Full Text] [Related]
18. Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes. Yoshida N, Asahi K, Sakakibara Y, Miyake K, Katayama A. J Biosci Bioeng; 2007 Aug 15; 104(2):91-7. PubMed ID: 17884652 [Abstract] [Full Text] [Related]
19. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Aulenta F, Bianchi A, Majone M, Petrangeli Papini M, Potalivo M, Tandoi V. Environ Int; 2005 Feb 15; 31(2):185-90. PubMed ID: 15661281 [Abstract] [Full Text] [Related]
20. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Biotechnol Bioeng; 2009 May 01; 103(1):85-91. PubMed ID: 19160378 [Abstract] [Full Text] [Related] Page: [Next] [New Search]