These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1814 related items for PubMed ID: 12658205

  • 1. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ.
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [Abstract] [Full Text] [Related]

  • 2. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA, Golden JA, O'Hara IB, McCann J, Kurth CD.
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS, Mulloy MR, Drinkwater DC, Lao OB, Johnson MD, Thunder M, Yu C, Chang P.
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [Abstract] [Full Text] [Related]

  • 5. Neurologic preservation by Na+-H+ exchange inhibition prior to 90 minutes of hypothermic circulatory arrest.
    Castellá M, Buckberg GD, Tan Z.
    Ann Thorac Surg; 2005 Feb; 79(2):646-54; discussion 646-54. PubMed ID: 15680853
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest.
    Nagashima M, Shin'oka T, Nollert G, Shum-Tim D, Rader CM, Mayer JE.
    Circulation; 1998 Nov 10; 98(19 Suppl):II378-84. PubMed ID: 9852930
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Addition of dextran sulfate to blood cardioplegia attenuates reperfusion injury in a porcine model of cardiopulmonary bypass.
    Banz Y, Rieben R, Zobrist C, Meier P, Shaw S, Lanz J, Carrel T, Berdat P.
    Eur J Cardiothorac Surg; 2008 Sep 10; 34(3):653-60. PubMed ID: 18572413
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat.
    Duebener LF, Hagino I, Sakamoto T, Mime LB, Stamm C, Zurakowski D, Schäfers HJ, Jonas RA.
    Circulation; 2002 Sep 24; 106(12 Suppl 1):I103-8. PubMed ID: 12354717
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B, Mackensen GB, Blobner M, Neff F, Reichart B, Kochs EF, Nollert G.
    J Thorac Cardiovasc Surg; 2006 Apr 24; 131(4):805-12. PubMed ID: 16580438
    [Abstract] [Full Text] [Related]

  • 17. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T, DiGeronimo R, Whitin J, Salazar J, Yu TT, Ling XB, Cohen H, Dixon P, Madan A.
    J Thorac Cardiovasc Surg; 2009 Dec 24; 138(6):1290-6. PubMed ID: 19660276
    [Abstract] [Full Text] [Related]

  • 18. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest.
    Schultz JM, Karamlou T, Swanson J, Shen I, Ungerleider RM.
    Ann Thorac Surg; 2006 Feb 24; 81(2):474-80; discussion 480. PubMed ID: 16427835
    [Abstract] [Full Text] [Related]

  • 19. Leukocyte filtration improves brain protection after a prolonged period of hypothermic circulatory arrest: A study in a chronic porcine model.
    Rimpiläinen J, Pokela M, Kiviluoma K, Anttila V, Vainionpää V, Hirvonen J, Ohtonen P, Mennander A, Remes E, Juvonen T.
    J Thorac Cardiovasc Surg; 2000 Dec 24; 120(6):1131-41. PubMed ID: 11088037
    [Abstract] [Full Text] [Related]

  • 20. pH-stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aortopulmonary collaterals.
    Kirshbom PM, Skaryak LR, DiBernardo LR, Kern FH, Greeley WJ, Gaynor JW, Ungerleider RM.
    J Thorac Cardiovasc Surg; 1996 Jan 24; 111(1):147-55; discussion 156-7. PubMed ID: 8551760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 91.