These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 12660354

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro-basilar arteries.
    Vass Z, Dai CF, Steyger PS, Jancsó G, Trune DR, Nuttall AL.
    Neuroscience; 2004; 124(4):919-27. PubMed ID: 15026132
    [Abstract] [Full Text] [Related]

  • 5. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.
    Zheng J, Deo N, Zou Y, Grosh K, Nuttall AL.
    J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Quinine-induced alterations of electrically evoked otoacoustic emissions and cochlear potentials in guinea pigs.
    Zheng J, Ren T, Parthasarathi A, Nuttall AL.
    Hear Res; 2001 Apr; 154(1-2):124-34. PubMed ID: 11423223
    [Abstract] [Full Text] [Related]

  • 9. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A, van Maarseveen JT, Scarfone E, Ulfendahl M, Flock B, Flock A.
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N, Warren RL, Keçeli B, Jacob S, Fridberger A, Reichenbach T.
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effect of endolymphatic hydrops on capsaicin-evoked increase in cochlear blood flow.
    Vass Z, Brechtelsbauer B, Nuttall AL, Miller JM.
    Acta Otolaryngol; 1995 Nov; 115(6):754-8. PubMed ID: 8749196
    [Abstract] [Full Text] [Related]

  • 15. The vanilloid (capsaicin) receptor: receptor types and species differences.
    Szallasi A.
    Gen Pharmacol; 1994 Mar; 25(2):223-43. PubMed ID: 8026721
    [Abstract] [Full Text] [Related]

  • 16. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA, Stark G, Nguyen-Huynh AT, Spear KA, Zhang H, Tanaka C, Li H.
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [Abstract] [Full Text] [Related]

  • 17. Autoradiographic visualization and pharmacological characterization of vanilloid (capsaicin) receptors in several species, including man.
    Szallasi A.
    Acta Physiol Scand Suppl; 1995 Sep; 629():1-68. PubMed ID: 8801775
    [Abstract] [Full Text] [Related]

  • 18. Additional pharmacological evidence that endogenous ATP modulates cochlear mechanics.
    Chen C, Skellett RA, Fallon M, Bobbin RP.
    Hear Res; 1998 Apr; 118(1-2):47-61. PubMed ID: 9606060
    [Abstract] [Full Text] [Related]

  • 19. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB, Applegate BE, Oghalai JS.
    J Neurosci; 2019 Mar 06; 39(10):1805-1816. PubMed ID: 30651330
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.