These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 12665427

  • 1. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochem J; 2003 Jul 01; 373(Pt 1):33-40. PubMed ID: 12665427
    [Abstract] [Full Text] [Related]

  • 2. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A, Gazić I, Vinković V, Kovarik Z.
    Arch Biochem Biophys; 2008 Mar 01; 471(1):72-6. PubMed ID: 18167304
    [Abstract] [Full Text] [Related]

  • 3. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochemistry; 2004 Mar 23; 43(11):3222-9. PubMed ID: 15023072
    [Abstract] [Full Text] [Related]

  • 4. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism.
    Saxena A, Viragh C, Frazier DS, Kovach IM, Maxwell DM, Lockridge O, Doctor BP.
    Biochemistry; 1998 Oct 27; 37(43):15086-96. PubMed ID: 9790671
    [Abstract] [Full Text] [Related]

  • 5. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL, Rabl CR, Neumann E.
    Biochemistry; 1996 Jan 23; 35(3):685-90. PubMed ID: 8547248
    [Abstract] [Full Text] [Related]

  • 6. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL.
    Biochemistry; 2003 May 13; 42(18):5438-52. PubMed ID: 12731886
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis.
    Taylor P, Hosea NA, Tsigelny I, Radić Z, Berman HA.
    Enantiomer; 1997 May 13; 2(3-4):249-60. PubMed ID: 9676269
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
    Kovarik Z, Radić Z, Grgas B, Skrinjarić-Spoljar M, Reiner E, Simeon-Rudolf V.
    Biochim Biophys Acta; 1999 Aug 17; 1433(1-2):261-71. PubMed ID: 10446376
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases.
    Saxena A, Qian N, Kovach IM, Kozikowski AP, Pang YP, Vellom DC, Radić Z, Quinn D, Taylor P, Doctor BP.
    Protein Sci; 1994 Oct 17; 3(10):1770-8. PubMed ID: 7849595
    [Abstract] [Full Text] [Related]

  • 14. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H, Barak D, Ordentlich A, Velan B, Shafferman A.
    Mol Pharmacol; 1996 Sep 17; 50(3):639-49. PubMed ID: 8794905
    [Abstract] [Full Text] [Related]

  • 15. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
    Hosea NA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P.
    Biochemistry; 1996 Aug 20; 35(33):10995-1004. PubMed ID: 8718893
    [Abstract] [Full Text] [Related]

  • 16. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y, Gnatt A, Neville LF, Soreq H.
    J Mol Biol; 1993 Nov 20; 234(2):289-96. PubMed ID: 8230213
    [Abstract] [Full Text] [Related]

  • 17. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity.
    Vellom DC, Radić Z, Li Y, Pickering NA, Camp S, Taylor P.
    Biochemistry; 1993 Jan 12; 32(1):12-7. PubMed ID: 8418833
    [Abstract] [Full Text] [Related]

  • 18. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes.
    Ashani Y, Radić Z, Tsigelny I, Vellom DC, Pickering NA, Quinn DM, Doctor BP, Taylor P.
    J Biol Chem; 1995 Mar 17; 270(11):6370-80. PubMed ID: 7890775
    [Abstract] [Full Text] [Related]

  • 19. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T, Mallender WD, Rosenberry TL.
    Biochemistry; 1998 Mar 24; 37(12):4206-16. PubMed ID: 9521743
    [Abstract] [Full Text] [Related]

  • 20. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.
    Hosea NA, Berman HA, Taylor P.
    Biochemistry; 1995 Sep 12; 34(36):11528-36. PubMed ID: 7547883
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.