These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 12666166
1. Mechanistic insights into oxidosqualene cyclizations through homology modeling. Schulz-Gasch T, Stahl M. J Comput Chem; 2003 Apr 30; 24(6):741-53. PubMed ID: 12666166 [Abstract] [Full Text] [Related]
2. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related]
3. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK, Chang CH, Liu YT, Wang TT. Chem Rec; 2008 Nov 04; 8(5):302-25. PubMed ID: 18956480 [Abstract] [Full Text] [Related]
4. The triterpene cyclase protein family: a systematic analysis. Racolta S, Juhl PB, Sirim D, Pleiss J. Proteins; 2012 Aug 04; 80(8):2009-19. PubMed ID: 22488823 [Abstract] [Full Text] [Related]
5. The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling. Dang T, Abe I, Zheng YF, Prestwich GD. Chem Biol; 1999 Jun 04; 6(6):333-41. PubMed ID: 10375539 [Abstract] [Full Text] [Related]
6. The structure of the membrane protein squalene-hopene cyclase at 2.0 A resolution. Wendt KU, Lenhart A, Schulz GE. J Mol Biol; 1999 Feb 12; 286(1):175-87. PubMed ID: 9931258 [Abstract] [Full Text] [Related]
7. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions. Wu TK, Liu YT, Chiu FH, Chang CH. Org Lett; 2006 Oct 12; 8(21):4691-4. PubMed ID: 17020279 [Abstract] [Full Text] [Related]
8. Squalene-hopene cyclases. Siedenburg G, Jendrossek D. Appl Environ Microbiol; 2011 Jun 12; 77(12):3905-15. PubMed ID: 21531832 [Abstract] [Full Text] [Related]
9. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies. Oliaro-Bosso S, Schulz-Gasch T, Taramino S, Scaldaferri M, Viola F, Balliano G. Biochem Soc Trans; 2005 Nov 12; 33(Pt 5):1202-5. PubMed ID: 16246081 [Abstract] [Full Text] [Related]
11. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene. Hoshino T, Shimizu K, Sato T. Angew Chem Int Ed Engl; 2004 Dec 10; 43(48):6700-3. PubMed ID: 15593147 [No Abstract] [Full Text] [Related]
12. Conjugated methyl sulfide and phenyl sulfide derivatives of oxidosqualene as inhibitors of oxidosqualene and squalene-hopene cyclases. Rocco F, Bosso SO, Viola F, Milla P, Roma G, Grossi G, Ceruti M. Lipids; 2003 Mar 10; 38(3):201-7. PubMed ID: 12784859 [Abstract] [Full Text] [Related]
13. Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases. Ceruti M, Balliano G, Rocco F, Milla P, Arpicco S, Cattel L, Viola F. Lipids; 2001 Jun 10; 36(6):629-36. PubMed ID: 11485168 [Abstract] [Full Text] [Related]
14. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions. Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW. Org Lett; 2006 Mar 30; 8(7):1319-22. PubMed ID: 16562881 [Abstract] [Full Text] [Related]
15. Alteration of the substrate's prefolded conformation and cyclization stereochemistry of oxidosqualene-lanosterol cyclase of Saccharomyces cerevisiae by substitution at phenylalanine 699. Wu TK, Chang CH, Wen HY, Liu YT, Li WH, Wang TT, Shie WS. Org Lett; 2010 Feb 05; 12(3):500-3. PubMed ID: 20055456 [Abstract] [Full Text] [Related]