These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 12666177

  • 21. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms.
    Bushnell DA, Westover KD, Davis RE, Kornberg RD.
    Science; 2004 Feb 13; 303(5660):983-8. PubMed ID: 14963322
    [Abstract] [Full Text] [Related]

  • 22. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes.
    Walter W, Kireeva ML, Studitsky VM, Kashlev M.
    J Biol Chem; 2003 Sep 19; 278(38):36148-56. PubMed ID: 12851391
    [Abstract] [Full Text] [Related]

  • 23. Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes.
    Egloff S, Murphy S.
    Biochem Soc Trans; 2008 Jun 19; 36(Pt 3):537-9. PubMed ID: 18482001
    [Abstract] [Full Text] [Related]

  • 24. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
    Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H.
    J Biol Chem; 2020 Apr 10; 295(15):4782-4795. PubMed ID: 32060094
    [Abstract] [Full Text] [Related]

  • 25. Iwr1 directs RNA polymerase II nuclear import.
    Czeko E, Seizl M, Augsberger C, Mielke T, Cramer P.
    Mol Cell; 2011 Apr 22; 42(2):261-6. PubMed ID: 21504834
    [Abstract] [Full Text] [Related]

  • 26. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.
    Tombácz I, Schauer T, Juhász I, Komonyi O, Boros I.
    Gene; 2009 Oct 15; 446(2):58-67. PubMed ID: 19632310
    [Abstract] [Full Text] [Related]

  • 27. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.
    Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S.
    Nature; 2004 Nov 25; 432(7016):517-22. PubMed ID: 15565157
    [Abstract] [Full Text] [Related]

  • 28. Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo.
    Morris DP, Lee JM, Sterner DE, Brickey WJ, Greenleaf AL.
    Methods; 1997 Jul 25; 12(3):264-75. PubMed ID: 9237170
    [Abstract] [Full Text] [Related]

  • 29. Dynamics of interaction of RNA polymerase II with nucleosomes. I. Effect of salts.
    Bhargava P.
    Protein Sci; 1993 Dec 25; 2(12):2233-45. PubMed ID: 8298467
    [Abstract] [Full Text] [Related]

  • 30. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase.
    Zheng H, Ji C, Gu S, Shi B, Wang J, Xie Y, Mao Y.
    Biochem Biophys Res Commun; 2005 Jun 17; 331(4):1401-7. PubMed ID: 15883030
    [Abstract] [Full Text] [Related]

  • 31. Genome-scale identification of nucleosome positions in S. cerevisiae.
    Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ.
    Science; 2005 Jul 22; 309(5734):626-30. PubMed ID: 15961632
    [Abstract] [Full Text] [Related]

  • 32. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II.
    Hirose Y, Iwamoto Y, Sakuraba K, Yunokuchi I, Harada F, Ohkuma Y.
    Biochem Biophys Res Commun; 2008 May 02; 369(2):449-55. PubMed ID: 18294453
    [Abstract] [Full Text] [Related]

  • 33. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N, Saldi T, Sheridan RM, Cortazar MA, Bentley DL.
    Mol Cell; 2017 May 18; 66(4):546-557.e3. PubMed ID: 28506463
    [Abstract] [Full Text] [Related]

  • 34. Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo.
    Grimaldi Y, Ferrari P, Strubin M.
    Genome Res; 2014 Jan 18; 24(1):117-24. PubMed ID: 24298073
    [Abstract] [Full Text] [Related]

  • 35. Accurate transcription initiation by RNA polymerase II from Candida utilis.
    Patturajan M, Chatterji D, Rao GR.
    Biochem Mol Biol Int; 1994 Aug 18; 33(5):901-7. PubMed ID: 7987259
    [Abstract] [Full Text] [Related]

  • 36. RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast.
    Brahma S, Henikoff S.
    Mol Cell; 2019 Jan 17; 73(2):238-249.e3. PubMed ID: 30554944
    [Abstract] [Full Text] [Related]

  • 37. Structural biology. A marvellous machine for making messages.
    Klug A.
    Science; 2001 Jun 08; 292(5523):1844-6. PubMed ID: 11397933
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.