These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


487 related items for PubMed ID: 12667834

  • 1. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation.
    Mottaghy FM, Gangitano M, Krause BJ, Pascual-Leone A.
    Neuroimage; 2003 Mar; 18(3):565-75. PubMed ID: 12667834
    [Abstract] [Full Text] [Related]

  • 2. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex.
    Walter H, Bretschneider V, Grön G, Zurowski B, Wunderlich AP, Tomczak R, Spitzer M.
    Cortex; 2003 Mar; 39(4-5):897-911. PubMed ID: 14584558
    [Abstract] [Full Text] [Related]

  • 3. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G, Oliveri M, Torriero S, Carlesimo GA, Turriziani P, Caltagirone C.
    Neuroimage; 2005 Jan 01; 24(1):34-9. PubMed ID: 15588594
    [Abstract] [Full Text] [Related]

  • 4. Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli.
    Crottaz-Herbette S, Anagnoson RT, Menon V.
    Neuroimage; 2004 Jan 01; 21(1):340-51. PubMed ID: 14741672
    [Abstract] [Full Text] [Related]

  • 5. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD, Bullmore ET, Sharma T.
    Neuroimage; 2000 Nov 01; 12(5):495-503. PubMed ID: 11034857
    [Abstract] [Full Text] [Related]

  • 6. Bilateral parieto-frontal network for verbal working memory: an interference approach using repetitive transcranial magnetic stimulation (rTMS).
    Mottaghy FM, Döring T, Müller-Gärtner HW, Töpper R, Krause BJ.
    Eur J Neurosci; 2002 Oct 01; 16(8):1627-32. PubMed ID: 12405977
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding.
    Reynolds JR, Donaldson DI, Wagner AD, Braver TS.
    Neuroimage; 2004 Apr 01; 21(4):1472-83. PubMed ID: 15050572
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Working memory effects on semantic processing: priming differences in pars orbitalis.
    Sabb FW, Bilder RM, Chou M, Bookheimer SY.
    Neuroimage; 2007 Aug 01; 37(1):311-22. PubMed ID: 17555989
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study.
    Jaeggi SM, Seewer R, Nirkko AC, Eckstein D, Schroth G, Groner R, Gutbrod K.
    Neuroimage; 2003 Jun 01; 19(2 Pt 1):210-25. PubMed ID: 12814572
    [Abstract] [Full Text] [Related]

  • 17. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J, Whyte J, Wang J, Rao H, Tang KZ, Detre JA.
    Neuroimage; 2006 May 15; 31(1):376-85. PubMed ID: 16427324
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.