These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 12672777

  • 1. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD, David G, Barrett EF.
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [Abstract] [Full Text] [Related]

  • 2. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G, Barrett EF.
    J Physiol; 2003 Apr 15; 548(Pt 2):425-38. PubMed ID: 12588898
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals.
    Zefirov AL, Abdrakhmanov MM, Mukhamedyarov MA, Grigoryev PN.
    Neuroscience; 2006 Dec 28; 143(4):905-10. PubMed ID: 17000054
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release.
    García-Chacón LE, Nguyen KT, David G, Barrett EF.
    J Physiol; 2006 Aug 01; 574(Pt 3):663-75. PubMed ID: 16613870
    [Abstract] [Full Text] [Related]

  • 9. Rapid, stimulation-induced reduction of C12-resorufin in motor nerve terminals: linkage to mitochondrial metabolism.
    Talbot JD, Barrett JN, Barrett EF, David G.
    J Neurochem; 2008 May 01; 105(3):807-19. PubMed ID: 18205748
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals.
    Calupca MA, Hendricks GM, Hardwick JC, Parsons RL.
    J Neurophysiol; 1999 Feb 01; 81(2):498-506. PubMed ID: 10036254
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S, McCarron JG.
    Cell Calcium; 2009 Aug 01; 46(2):107-13. PubMed ID: 19577805
    [Abstract] [Full Text] [Related]

  • 17. Cisatracurium: myographical and electrophysiological studies in the isolated rat muscle.
    Serra CS, Oliveira AC.
    Fundam Clin Pharmacol; 2006 Jun 01; 20(3):291-8. PubMed ID: 16671964
    [Abstract] [Full Text] [Related]

  • 18. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
    Billups B, Forsythe ID.
    J Neurosci; 2002 Jul 15; 22(14):5840-7. PubMed ID: 12122046
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.