These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1764 related items for PubMed ID: 12673830

  • 1. Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice.
    Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L.
    Glia; 2003 May; 42(3):235-51. PubMed ID: 12673830
    [Abstract] [Full Text] [Related]

  • 2. Altered blood-brain barrier development in dystrophic MDX mice.
    Nico B, Paola Nicchia G, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, Roncali L.
    Neuroscience; 2004 May; 125(4):921-35. PubMed ID: 15120852
    [Abstract] [Full Text] [Related]

  • 3. Increased matrix-metalloproteinase-2 and matrix-metalloproteinase-9 expression in the brain of dystrophic mdx mouse.
    Nico B, Corsi P, Ria R, Crivellato E, Vacca A, Roccaro AM, Mangieri D, Ribatti D, Roncali L.
    Neuroscience; 2006 Jul 07; 140(3):835-48. PubMed ID: 16650610
    [Abstract] [Full Text] [Related]

  • 4. Correlation of the presence of blood-brain barrier tight junctions and expression of zonula occludens protein ZO-1 in vitro: a freeze-fracture and immunofluorescence study.
    Gao P, Shivers RR.
    J Submicrosc Cytol Pathol; 2004 Jan 07; 36(1):7-15. PubMed ID: 15311669
    [Abstract] [Full Text] [Related]

  • 5. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.
    Liu LB, Xue YX, Liu YH, Wang YB.
    J Neurosci Res; 2008 Apr 07; 86(5):1153-68. PubMed ID: 18183615
    [Abstract] [Full Text] [Related]

  • 6. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain.
    Beauchesne E, Desjardins P, Hazell AS, Butterworth RF.
    Neurochem Int; 2009 Sep 07; 55(5):275-81. PubMed ID: 19576514
    [Abstract] [Full Text] [Related]

  • 7. The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models.
    Nicchia GP, Nico B, Camassa LM, Mola MG, Loh N, Dermietzel R, Spray DC, Svelto M, Frigeri A.
    Neuroscience; 2004 Sep 07; 129(4):935-45. PubMed ID: 15561409
    [Abstract] [Full Text] [Related]

  • 8. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M.
    Neurochem Int; 2009 Sep 07; 54(3-4):253-63. PubMed ID: 19111869
    [Abstract] [Full Text] [Related]

  • 9. Spinal cord compression injury in guinea pigs: structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair.
    Jaeger CB, Blight AR.
    Exp Neurol; 1997 Apr 07; 144(2):381-99. PubMed ID: 9168838
    [Abstract] [Full Text] [Related]

  • 10. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels.
    Kim JH, Kim JH, Yu YS, Kim DH, Kim KW.
    J Neurosci Res; 2009 Feb 15; 87(3):653-9. PubMed ID: 18816791
    [Abstract] [Full Text] [Related]

  • 11. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme.
    Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B.
    Acta Neuropathol; 2003 Jun 15; 105(6):586-92. PubMed ID: 12734665
    [Abstract] [Full Text] [Related]

  • 12. Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice.
    Zhou J, Kong H, Hua X, Xiao M, Ding J, Hu G.
    Neuroreport; 2008 Jan 08; 19(1):1-5. PubMed ID: 18281883
    [Abstract] [Full Text] [Related]

  • 13. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus.
    Norsted E, Gömüç B, Meister B.
    J Chem Neuroanat; 2008 Oct 08; 36(2):107-21. PubMed ID: 18602987
    [Abstract] [Full Text] [Related]

  • 14. Effects of prednisolone on the dystrophin-associated proteins in the blood-brain barrier and skeletal muscle of dystrophic mdx mice.
    Tamma R, Annese T, Capogrosso RF, Cozzoli A, Benagiano V, Sblendorio V, Ruggieri S, Crivellato E, Specchia G, Ribatti D, De Luca A, Nico B.
    Lab Invest; 2013 May 08; 93(5):592-610. PubMed ID: 23528847
    [Abstract] [Full Text] [Related]

  • 15. HIF activation and VEGF overexpression are coupled with ZO-1 up-phosphorylation in the brain of dystrophic mdx mouse.
    Nico B, Mangieri D, Crivellato E, Longo V, De Giorgis M, Capobianco C, Corsi P, Benagiano V, Roncali L, Ribatti D.
    Brain Pathol; 2007 Oct 08; 17(4):399-406. PubMed ID: 17784876
    [Abstract] [Full Text] [Related]

  • 16. [Effect of hyperthermia on tight junctions between endothelial cells of the blood-brain barrier model in vitro].
    Chen YZ, Xu RX, Huang QJ, Xu ZJ, Jiang XD, Cai YQ.
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jan 08; 23(1):21-4. PubMed ID: 12527507
    [Abstract] [Full Text] [Related]

  • 17. Studies of mdx mice.
    Vajda Z, Pedersen M, Doczi T, Sulyok E, Nielsen S.
    Neuroscience; 2004 Jan 08; 129(4):993-8. PubMed ID: 15561414
    [Abstract] [Full Text] [Related]

  • 18. Specific AHNAK expression in brain endothelial cells with barrier properties.
    Gentil BJ, Benaud C, Delphin C, Remy C, Berezowski V, Cecchelli R, Feraud O, Vittet D, Baudier J.
    J Cell Physiol; 2005 May 08; 203(2):362-71. PubMed ID: 15493012
    [Abstract] [Full Text] [Related]

  • 19. ZO-1 reorganization and myofibroblast transformation of corneal endothelial cells after freeze injury in the cat.
    Petroll WM, Barry-Lane PA, Cavanagh HD, Jester JV.
    Exp Eye Res; 1997 Feb 08; 64(2):257-67. PubMed ID: 9176060
    [Abstract] [Full Text] [Related]

  • 20. Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells.
    Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T.
    J Cell Physiol; 2008 Nov 08; 217(2):388-99. PubMed ID: 18543246
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 89.