These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
483 related items for PubMed ID: 12676146
1. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties. Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM. Neuroscience; 2003; 118(1):145-59. PubMed ID: 12676146 [Abstract] [Full Text] [Related]
2. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures. Nosrat CA, MacCallum DK, Mistretta CM. Cell Tissue Res; 2001 Jan; 303(1):35-45. PubMed ID: 11236003 [Abstract] [Full Text] [Related]
3. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture. Grigaliunas A, Bradley RM, MacCallum DK, Mistretta CM. J Neurophysiol; 2002 Oct; 88(4):2058-74. PubMed ID: 12364528 [Abstract] [Full Text] [Related]
4. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes. Farbman AI, Guagliardo N, Sollars SI, Hill DL. J Neurosci Res; 2004 Dec 01; 78(5):659-67. PubMed ID: 15495212 [Abstract] [Full Text] [Related]
5. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM. Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409 [Abstract] [Full Text] [Related]
6. Distinct roles for Sema3A, Sema3F, and an unidentified trophic factor in controlling the advance of geniculate axons to gustatory lingual epithelium. Vilbig R, Cosmano J, Giger R, Rochlin MW. J Neurocytol; 2004 Dec 15; 33(6):591-606. PubMed ID: 16217616 [Abstract] [Full Text] [Related]
7. Neurotrophin-4 is more potent than brain-derived neurotrophic factor in promoting, attracting and suppressing geniculate ganglion neurite outgrowth. Runge EM, Hoshino N, Biehl MJ, Ton S, Rochlin MW. Dev Neurosci; 2012 Dec 15; 34(5):389-401. PubMed ID: 23151843 [Abstract] [Full Text] [Related]
8. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. Patel AV, Huang T, Krimm RF. J Comp Neurol; 2010 Aug 15; 518(16):3290-301. PubMed ID: 20575060 [Abstract] [Full Text] [Related]
9. Lingual deficits in neurotrophin double knockout mice. Nosrat IV, Agerman K, Marinescu A, Ernfors P, Nosrat CA. J Neurocytol; 2004 Dec 15; 33(6):607-15. PubMed ID: 16217617 [Abstract] [Full Text] [Related]
10. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue. Mbiene JP. J Neurocytol; 2004 Dec 15; 33(6):617-29. PubMed ID: 16217618 [Abstract] [Full Text] [Related]
11. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation. Nosrat CA, Ebendal T, Olson L. J Comp Neurol; 1996 Dec 23; 376(4):587-602. PubMed ID: 8978472 [Abstract] [Full Text] [Related]
12. Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons. Rochlin MW, O'Connor R, Giger RJ, Verhaagen J, Farbman AI. J Comp Neurol; 2000 Jul 10; 422(4):579-93. PubMed ID: 10861527 [Abstract] [Full Text] [Related]
13. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium. Zaidi FN, Krimm RF, Whitehead MC. J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699 [Abstract] [Full Text] [Related]
14. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation. Fei D, Krimm RF. PLoS One; 2013 Dec 12; 8(12):e83460. PubMed ID: 24386206 [Abstract] [Full Text] [Related]
15. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation. Liebl DJ, Mbiene JP, Parada LF. Dev Biol; 1999 Sep 15; 213(2):378-89. PubMed ID: 10479455 [Abstract] [Full Text] [Related]
16. BDNF and NT4 play interchangeable roles in gustatory development. Huang T, Krimm RF. Dev Biol; 2014 Feb 15; 386(2):308-20. PubMed ID: 24378336 [Abstract] [Full Text] [Related]
17. Regulation of neurotrophin-induced axonal responses via Rho GTPases. Ozdinler PH, Erzurumlu RS. J Comp Neurol; 2001 Oct 01; 438(4):377-87. PubMed ID: 11559894 [Abstract] [Full Text] [Related]
18. Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. Kimpinski K, Campenot RB, Mearow K. J Neurobiol; 1997 Oct 01; 33(4):395-410. PubMed ID: 9322157 [Abstract] [Full Text] [Related]
19. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways. Mbiene JP, Mistretta CM. Acta Anat (Basel); 1997 Oct 01; 160(3):139-58. PubMed ID: 9718388 [Abstract] [Full Text] [Related]
20. Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Needham K, Nayagam BA, Minter RL, O'Leary SJ. Hear Res; 2012 Sep 01; 291(1-2):1-14. PubMed ID: 22796476 [Abstract] [Full Text] [Related] Page: [Next] [New Search]