These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 1268186
1. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake. Lanyi JK, Yearwood-Drayton V, MacDonald RE. Biochemistry; 1976 Apr 20; 15(8):1595-603. PubMed ID: 1268186 [Abstract] [Full Text] [Related]
2. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Lanyi JK, Renthal R, MacDonald RE. Biochemistry; 1976 Apr 20; 15(8):1603-10. PubMed ID: 5106 [Abstract] [Full Text] [Related]
4. On the glutamate transport through cell envelope vesicles of Halobacterium halobium. Kamo N, Wakamatsu Y, Kohno K, Kobatake Y. Biochem Biophys Res Commun; 1988 May 16; 152(3):1090-6. PubMed ID: 2897843 [Abstract] [Full Text] [Related]
7. Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. MacDonald RE, Greene RV, Lanyi JK. Biochemistry; 1977 Jul 12; 16(14):3227-35. PubMed ID: 889797 [Abstract] [Full Text] [Related]
8. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Renthal R, Lanyi JK. Biochemistry; 1976 May 18; 15(10):2136-43. PubMed ID: 6040 [Abstract] [Full Text] [Related]
10. Light-driven primary sodium ion transport in Halobacterium halobium membranes. Lanyi JK. J Supramol Struct; 1980 May 18; 13(1):83-92. PubMed ID: 7442256 [Abstract] [Full Text] [Related]
11. DCCD-sensitive Na+-transport in the membrane vesicles of Halobacterium halobium. Murakami N, Konishi T. J Biochem; 1988 Feb 18; 103(2):231-6. PubMed ID: 3372488 [Abstract] [Full Text] [Related]
12. Calcium transport in Halobacterium halobium envelope vesicles. Belliveau JW, Lanyi JK. Arch Biochem Biophys; 1978 Feb 18; 186(1):98-105. PubMed ID: 629541 [No Abstract] [Full Text] [Related]
13. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium. Bakker EP, Rottenberg H, Caplan SR. Biochim Biophys Acta; 1976 Sep 13; 440(3):557-72. PubMed ID: 9137 [Abstract] [Full Text] [Related]
14. Preparation and characterization of inverted cell envelopes of Halobacterium halobium. Garty H, Danon A, Caplan SR. Eur J Biochem; 1980 Oct 13; 111(2):411-8. PubMed ID: 7460904 [Abstract] [Full Text] [Related]
15. Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. Luisi BF, Lanyi JK, Weber HJ. FEBS Lett; 1980 Aug 11; 117(1):354-8. PubMed ID: 6250899 [Abstract] [Full Text] [Related]
16. Light-activated amino acid transport in Halobacterium halobium envelope vesicles. MacDonald RE, Lanyi JK. Fed Proc; 1977 May 11; 36(6):1828-32. PubMed ID: 15878 [Abstract] [Full Text] [Related]
17. Light-driven sodium transport in sub-bacterial particles of Halobacterium halobium. Eisenbach M, Cooper S, Garty H, Johnstone RM, Rottenberg H, Caplan SR. Biochim Biophys Acta; 1977 Mar 17; 465(3):599-613. PubMed ID: 836840 [Abstract] [Full Text] [Related]
18. L-glutamate transport in renal plasma membrane vesicles. Sacktor B. Mol Cell Biochem; 1981 Sep 25; 39():239-51. PubMed ID: 6118822 [Abstract] [Full Text] [Related]
20. Transport of N1-methylnicotinamide by organic cation-proton exchange in rat liver membrane vesicles. Moseley RH, Morrissette J, Johnson TR. Am J Physiol; 1990 Dec 10; 259(6 Pt 1):G973-82. PubMed ID: 2175555 [Abstract] [Full Text] [Related] Page: [Next] [New Search]