These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


393 related items for PubMed ID: 12687003

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome.
    Lomri A, Lemonnier J, Hott M, de Parseval N, Lajeunie E, Munnich A, Renier D, Marie PJ.
    J Clin Invest; 1998 Mar 15; 101(6):1310-7. PubMed ID: 9502772
    [Abstract] [Full Text] [Related]

  • 5. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans.
    Liu YH, Tang Z, Kundu RK, Wu L, Luo W, Zhu D, Sangiorgi F, Snead ML, Maxson RE.
    Dev Biol; 1999 Jan 15; 205(2):260-74. PubMed ID: 9917362
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Noggin underexpression and runx-2 overexpression in a craniosynostosis rabbit model.
    Gabbay JS, Heller J, Spoon DB, Mooney M, Acarturk O, Askari M, Wasson KL, Bradley JP.
    Ann Plast Surg; 2006 Mar 15; 56(3):306-11. PubMed ID: 16508363
    [Abstract] [Full Text] [Related]

  • 8. In vitro differentiation of human calvarial suture derived cells with and without dexamethasone does not induce in vivo-like expression.
    Coussens AK, Hughes IP, Morris CP, Powell BC, Anderson PJ.
    J Cell Physiol; 2009 Jan 15; 218(1):183-91. PubMed ID: 18803234
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling.
    Marie PJ, Debiais F, Haÿ E.
    Histol Histopathol; 2002 Jan 15; 17(3):877-85. PubMed ID: 12168799
    [Abstract] [Full Text] [Related]

  • 13. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ, Rice DP, Kettunen PJ, Thesleff I.
    Development; 1998 Apr 15; 125(7):1241-51. PubMed ID: 9477322
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Transforming growth factor-beta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis.
    Opperman LA, Adab K, Gakunga PT.
    Dev Dyn; 2000 Oct 15; 219(2):237-47. PubMed ID: 11002343
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Studies in cranial suture biology: Part I. Increased immunoreactivity for TGF-beta isoforms (beta 1, beta 2, and beta 3) during rat cranial suture fusion.
    Roth DA, Longaker MT, McCarthy JG, Rosen DM, McMullen HF, Levine JP, Sung J, Gold LI.
    J Bone Miner Res; 1997 Mar 15; 12(3):311-21. PubMed ID: 9076573
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.