These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades. Sano M, Schneider MD. Circ Res; 2004 Oct 29; 95(9):867-76. PubMed ID: 15514168 [Abstract] [Full Text] [Related]
3. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Sano M, Abdellatif M, Oh H, Xie M, Bagella L, Giordano A, Michael LH, DeMayo FJ, Schneider MD. Nat Med; 2002 Nov 29; 8(11):1310-7. PubMed ID: 12368904 [Abstract] [Full Text] [Related]
4. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD. EMBO J; 2004 Sep 01; 23(17):3559-69. PubMed ID: 15297879 [Abstract] [Full Text] [Related]
11. Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein-1. Espinoza-Derout J, Wagner M, Salciccioli L, Lazar JM, Bhaduri S, Mascareno E, Chaqour B, Siddiqui MA. Circ Res; 2009 Jun 19; 104(12):1347-54. PubMed ID: 19443839 [Abstract] [Full Text] [Related]
12. Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. Kapasi AJ, Spector DH. J Virol; 2008 Jan 19; 82(1):394-407. PubMed ID: 17942543 [Abstract] [Full Text] [Related]
13. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. Fu TJ, Peng J, Lee G, Price DH, Flores O. J Biol Chem; 1999 Dec 03; 274(49):34527-30. PubMed ID: 10574912 [Abstract] [Full Text] [Related]
14. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. Ramanathan Y, Reza SM, Young TM, Mathews MB, Pe'ery T. J Virol; 1999 Jul 03; 73(7):5448-58. PubMed ID: 10364292 [Abstract] [Full Text] [Related]
15. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Nature; 2018 Jun 03; 558(7709):318-323. PubMed ID: 29849146 [Abstract] [Full Text] [Related]
16. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC, Liu H, Rice AP. J Cell Physiol; 2010 Jul 03; 224(1):84-93. PubMed ID: 20201073 [Abstract] [Full Text] [Related]
17. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Pei Y, Du H, Singer J, Stamour C, Granitto S, Shuman S, Fisher RP. Mol Cell Biol; 2006 Feb 03; 26(3):777-88. PubMed ID: 16428435 [Abstract] [Full Text] [Related]
18. Activation of MyoD-dependent transcription by cdk9/cyclin T2. Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, Guanti G, Puri PL, Giordano A. Oncogene; 2002 Jun 13; 21(26):4137-48. PubMed ID: 12037670 [Abstract] [Full Text] [Related]
19. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. Oqani RK, Kim HR, Diao YF, Park CS, Jin DI. BMC Dev Biol; 2011 Jun 03; 11():33. PubMed ID: 21639898 [Abstract] [Full Text] [Related]
20. Upregulation of cyclin T1/CDK9 complexes during T cell activation. Garriga J, Peng J, Parreño M, Price DH, Henderson EE, Graña X. Oncogene; 1998 Dec 17; 17(24):3093-102. PubMed ID: 9872325 [Abstract] [Full Text] [Related] Page: [Next] [New Search]