These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 12702708

  • 1. Postnatal development of corticospinal postsynaptic action.
    Meng Z, Martin JH.
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [Abstract] [Full Text] [Related]

  • 2. The corticospinal system: from development to motor control.
    Martin JH.
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [Abstract] [Full Text] [Related]

  • 3. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ, Kalil K.
    J Comp Neurol; 1994 Jun 08; 344(2):270-82. PubMed ID: 8077461
    [Abstract] [Full Text] [Related]

  • 4. Physiological basis of motor effects of a transient stimulus to cerebral cortex.
    Amassian VE, Stewart M, Quirk GJ, Rosenthal JL.
    Neurosurgery; 1987 Jan 08; 20(1):74-93. PubMed ID: 3543727
    [Abstract] [Full Text] [Related]

  • 5. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ, Davies BM, Upile NS, Gibson CL, Bradley PM.
    Eur J Neurosci; 2004 Nov 08; 20(10):2555-66. PubMed ID: 15548199
    [Abstract] [Full Text] [Related]

  • 6. Synapse elimination in the corticospinal projection during the early postnatal period.
    Kamiyama T, Yoshioka N, Sakurai M.
    J Neurophysiol; 2006 Apr 08; 95(4):2304-13. PubMed ID: 16267122
    [Abstract] [Full Text] [Related]

  • 7. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q, Martin JH.
    Exp Brain Res; 2000 Sep 08; 134(2):187-98. PubMed ID: 11037285
    [Abstract] [Full Text] [Related]

  • 8. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J.
    Rev Neurol (Paris); 1984 Sep 08; 140(5):309-29. PubMed ID: 6379818
    [Abstract] [Full Text] [Related]

  • 9. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P, Jin LH, Liang T, Liu EZ, Zhao SG.
    Chin Med J (Engl); 2006 Aug 20; 119(16):1331-8. PubMed ID: 16934177
    [Abstract] [Full Text] [Related]

  • 10. Critical period for activity-dependent elimination of corticospinal synapses in vitro.
    Ohno T, Sakurai M.
    Neuroscience; 2005 Aug 20; 132(4):917-22. PubMed ID: 15857697
    [Abstract] [Full Text] [Related]

  • 11. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
    Salimi I, Martin JH.
    J Neurosci; 2004 May 26; 24(21):4952-61. PubMed ID: 15163687
    [Abstract] [Full Text] [Related]

  • 12. Long-lasting facilitation of pyramidal tract input to spinal interneurons.
    Iriki A, Keller A, Pavlides C, Asanuma H.
    Neuroreport; 1990 Oct 26; 1(2):157-60. PubMed ID: 2129871
    [Abstract] [Full Text] [Related]

  • 13. Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in in vitro rat slice co-cultures.
    Maeda H, Ohno T, Sakurai M.
    Neuroscience; 2007 Dec 19; 150(4):829-40. PubMed ID: 18022322
    [Abstract] [Full Text] [Related]

  • 14. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW, Chakrabarty S, Haque R, Martin JH.
    J Comp Neurol; 2008 Feb 10; 506(5):838-50. PubMed ID: 18076081
    [Abstract] [Full Text] [Related]

  • 15. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S, Martin JH.
    Eur J Neurosci; 2011 Sep 10; 34(5):682-94. PubMed ID: 21896059
    [Abstract] [Full Text] [Related]

  • 16. Activity- and use-dependent plasticity of the developing corticospinal system.
    Martin JH, Friel KM, Salimi I, Chakrabarty S.
    Neurosci Biobehav Rev; 2007 Sep 10; 31(8):1125-35. PubMed ID: 17599407
    [Abstract] [Full Text] [Related]

  • 17. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey.
    Isa T, Ohki Y, Seki K, Alstermark B.
    J Neurophysiol; 2006 Jun 10; 95(6):3674-85. PubMed ID: 16495365
    [Abstract] [Full Text] [Related]

  • 18. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study.
    Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, Tuszynski MH.
    J Comp Neurol; 2004 May 24; 473(2):147-61. PubMed ID: 15101086
    [Abstract] [Full Text] [Related]

  • 19. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey.
    Edgley SA, Eyre JA, Lemon RN, Miller S.
    Brain; 1997 May 24; 120 ( Pt 5)():839-53. PubMed ID: 9183254
    [Abstract] [Full Text] [Related]

  • 20. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses.
    Gaunt RA, Prochazka A, Mushahwar VK, Guevremont L, Ellaway PH.
    J Neurophysiol; 2006 Dec 24; 96(6):2995-3005. PubMed ID: 16943320
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.