These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, Fink GR, Nowak DA. Ann Neurol; 2009 Sep 14; 66(3):298-309. PubMed ID: 19798637 [Abstract] [Full Text] [Related]
43. Very low-frequency rTMS modulates SEPs over the contralateral hemisphere. Uguisu H, Urushihara R, Hosono Y, Asanuma K, Shimazu H, Murase N, Kaji R. J Med Invest; 2010 Feb 14; 57(1-2):109-13. PubMed ID: 20299749 [Abstract] [Full Text] [Related]
44. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. Richieri R, Boyer L, Farisse J, Colavolpe C, Mundler O, Lancon C, Guedj E. Eur J Nucl Med Mol Imaging; 2011 Sep 14; 38(9):1715-22. PubMed ID: 21647787 [Abstract] [Full Text] [Related]
45. Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Wassermann EM, Wedegaertner FR, Ziemann U, George MS, Chen R. Neurosci Lett; 1998 Jul 10; 250(3):141-4. PubMed ID: 9708852 [Abstract] [Full Text] [Related]
46. Effect of slow rTMS of motor cortex on the excitability of the blink reflex: a study in healthy humans. De Vito A, Gastaldo E, Tugnoli V, Eleopra R, Casula A, Tola MR, Granieri E, Quatrale R. Clin Neurophysiol; 2009 Jan 10; 120(1):174-80. PubMed ID: 19022703 [Abstract] [Full Text] [Related]
47. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Pauly MG, Steinmeier A, Bolte C, Hamami F, Tzvi E, Münchau A, Bäumer T, Weissbach A. Sci Rep; 2021 Feb 04; 11(1):3070. PubMed ID: 33542291 [Abstract] [Full Text] [Related]
48. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke. Tretriluxana J, Kantak S, Tretriluxana S, Wu AD, Fisher BE. Disabil Rehabil Assist Technol; 2013 Mar 04; 8(2):121-4. PubMed ID: 23244391 [Abstract] [Full Text] [Related]
49. Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: a glucose metabolic PET study. Siebner H, Peller M, Bartenstein P, Willoch F, Rossmeier C, Schwaiger M, Conrad B. Hum Brain Mapp; 2001 Mar 04; 12(3):157-67. PubMed ID: 11170307 [Abstract] [Full Text] [Related]
50. Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson's disease. Sestini S, Scotto di Luzio A, Ammannati F, De Cristofaro MT, Passeri A, Martini S, Pupi A. J Nucl Med; 2002 Jun 04; 43(6):725-32. PubMed ID: 12050315 [Abstract] [Full Text] [Related]
51. Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation. Simis M, Adeyemo BO, Medeiros LF, Miraval F, Gagliardi RJ, Fregni F. Neuroreport; 2013 Dec 04; 24(17):973-5. PubMed ID: 24100412 [Abstract] [Full Text] [Related]
52. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning. Kobayashi M. Restor Neurol Neurosci; 2010 Dec 04; 28(4):437-48. PubMed ID: 20714068 [Abstract] [Full Text] [Related]
53. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. Kumru H, Albu S, Rothwell J, Leon D, Flores C, Opisso E, Tormos JM, Valls-Sole J. Clin Neurophysiol; 2017 Oct 04; 128(10):2043-2047. PubMed ID: 28858700 [Abstract] [Full Text] [Related]
54. Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation. Heide G, Witte OW, Ziemann U. Exp Brain Res; 2006 May 04; 171(1):26-34. PubMed ID: 16307247 [Abstract] [Full Text] [Related]
55. Comparison of hemodynamic changes after repetitive transcranial magnetic stimulation over the anatomical hand knob and hand motor hotspot: A functional near-infrared spectroscopy study. Kim J, Kim H, Lee J, Lee HJ, Na Y, Chang WH, Kim YH. Restor Neurol Neurosci; 2020 May 04; 38(6):407-417. PubMed ID: 33285650 [Abstract] [Full Text] [Related]
56. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease. Lefaucheur JP, Drouot X, Von Raison F, Ménard-Lefaucheur I, Cesaro P, Nguyen JP. Clin Neurophysiol; 2004 Nov 04; 115(11):2530-41. PubMed ID: 15465443 [Abstract] [Full Text] [Related]
57. Increased regional cerebral perfusion in contralateral motor and somatosensory areas after median nerve stimulation therapy. Liu JT, Lee JK, Chang PJ, Sun CM. Acta Neurochir Suppl; 2008 Nov 04; 101():65-70. PubMed ID: 18642636 [Abstract] [Full Text] [Related]
58. 1-Hz repetitive transcranial magnetic stimulation increases cerebral vasomotor reactivity: a possible autonomic nervous system modulation. Vernieri F, Altamura C, Palazzo P, Altavilla R, Fabrizio E, Fini R, Melgari JM, Paolucci M, Pasqualetti P, Maggio P. Brain Stimul; 2014 Nov 04; 7(2):281-6. PubMed ID: 24485467 [Abstract] [Full Text] [Related]
59. Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates. Salinas FS, Narayana S, Zhang W, Fox PT, Szabó CÁ. Brain Stimul; 2013 Sep 04; 6(5):777-87. PubMed ID: 23540281 [Abstract] [Full Text] [Related]
60. Changes in canine cerebral perfusion after accelerated high frequency repetitive transcranial magnetic stimulation (HF-rTMS): A proof of concept study. Dockx R, Baeken C, Duprat R, De Vos F, Saunders JH, Polis I, Audenaert K, Peremans K. Vet J; 2018 Apr 04; 234():66-71. PubMed ID: 29680396 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]