These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 12709596

  • 1. Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: distributions of phi.
    Avbelj F, Baldwin RL.
    Proc Natl Acad Sci U S A; 2003 May 13; 100(10):5742-7. PubMed ID: 12709596
    [Abstract] [Full Text] [Related]

  • 2. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F.
    J Mol Biol; 2000 Jul 28; 300(5):1335-59. PubMed ID: 10903873
    [Abstract] [Full Text] [Related]

  • 3. Intrinsic backbone preferences are fully present in blocked amino acids.
    Avbelj F, Grdadolnik SG, Grdadolnik J, Baldwin RL.
    Proc Natl Acad Sci U S A; 2006 Jan 31; 103(5):1272-7. PubMed ID: 16423894
    [Abstract] [Full Text] [Related]

  • 4. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
    Serrano L.
    J Mol Biol; 1995 Nov 24; 254(2):322-33. PubMed ID: 7490751
    [Abstract] [Full Text] [Related]

  • 5. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
    Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM.
    J Mol Biol; 1996 Jan 26; 255(3):494-506. PubMed ID: 8568893
    [Abstract] [Full Text] [Related]

  • 6. Maximum entropy reconstruction of joint phi, psi-distribution with a coil-library prior: the backbone conformation of the peptide hormone motilin in aqueous solution from phi and psi-dependent J-couplings.
    Massad T, Jarvet J, Tanner R, Tomson K, Smirnova J, Palumaa P, Sugai M, Kohno T, Vanatalu K, Damberg P.
    J Biomol NMR; 2007 Jun 26; 38(2):107-23. PubMed ID: 17458509
    [Abstract] [Full Text] [Related]

  • 7. Origin of the neighboring residue effect on peptide backbone conformation.
    Avbelj F, Baldwin RL.
    Proc Natl Acad Sci U S A; 2004 Jul 27; 101(30):10967-72. PubMed ID: 15254296
    [Abstract] [Full Text] [Related]

  • 8. Influence of side chain conformations on local conformational features of amino acids and implication for force field development.
    Jiang F, Han W, Wu YD.
    J Phys Chem B; 2010 May 06; 114(17):5840-50. PubMed ID: 20392111
    [Abstract] [Full Text] [Related]

  • 9. Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide.
    Griffiths-Jones SR, Sharman GJ, Maynard AJ, Searle MS.
    J Mol Biol; 1998 Dec 18; 284(5):1597-609. PubMed ID: 9878373
    [Abstract] [Full Text] [Related]

  • 10. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F, Han W, Wu YD.
    Phys Chem Chem Phys; 2013 Mar 14; 15(10):3413-28. PubMed ID: 23385383
    [Abstract] [Full Text] [Related]

  • 11. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA, Jagielska A, Scheraga HA.
    J Phys Chem B; 2006 Mar 16; 110(10):5025-44. PubMed ID: 16526746
    [Abstract] [Full Text] [Related]

  • 12. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins.
    Beck DA, Alonso DO, Inoyama D, Daggett V.
    Proc Natl Acad Sci U S A; 2008 Aug 26; 105(34):12259-64. PubMed ID: 18713857
    [Abstract] [Full Text] [Related]

  • 13. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests.
    Roterman IK, Lambert MH, Gibson KD, Scheraga HA.
    J Biomol Struct Dyn; 1989 Dec 26; 7(3):421-53. PubMed ID: 2627294
    [Abstract] [Full Text] [Related]

  • 14. Electrostatic screening and backbone preferences of amino acid residues in urea-denatured ubiquitin.
    Avbelj F, Grdadolnik SG.
    Protein Sci; 2007 Feb 26; 16(2):273-84. PubMed ID: 17242431
    [Abstract] [Full Text] [Related]

  • 15. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences.
    Song J, Tan H, Wang M, Webb GI, Akutsu T.
    PLoS One; 2012 Feb 26; 7(2):e30361. PubMed ID: 22319565
    [Abstract] [Full Text] [Related]

  • 16. The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters.
    van der Spoel D.
    Biochem Cell Biol; 1998 Feb 26; 76(2-3):164-70. PubMed ID: 9923685
    [Abstract] [Full Text] [Related]

  • 17. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y, Beveridge DL.
    Proteins; 2002 Jan 01; 46(1):128-46. PubMed ID: 11746709
    [Abstract] [Full Text] [Related]

  • 18. Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library.
    Jha AK, Colubri A, Zaman MH, Koide S, Sosnick TR, Freed KF.
    Biochemistry; 2005 Jul 19; 44(28):9691-702. PubMed ID: 16008354
    [Abstract] [Full Text] [Related]

  • 19. Hypervariability of accessible and inaccessible conformational space of proteins.
    Ravikumar A, Srinivasan N.
    Curr Res Struct Biol; 2021 Jul 19; 3():229-238. PubMed ID: 34604793
    [Abstract] [Full Text] [Related]

  • 20. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L.
    Jiang F, Zhou CY, Wu YD.
    J Phys Chem B; 2014 Jun 26; 118(25):6983-98. PubMed ID: 24815738
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.