These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


767 related items for PubMed ID: 12715202

  • 1. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ.
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [Abstract] [Full Text] [Related]

  • 2. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D, Proft M, Entian KD.
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [Abstract] [Full Text] [Related]

  • 3. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J, Olsson L, Nielsen J.
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [Abstract] [Full Text] [Related]

  • 4. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.
    Jiang R, Carlson M.
    Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458
    [Abstract] [Full Text] [Related]

  • 5. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism.
    Vincent O, Townley R, Kuchin S, Carlson M.
    Genes Dev; 2001 May 01; 15(9):1104-14. PubMed ID: 11331606
    [Abstract] [Full Text] [Related]

  • 6. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex.
    Sanz P, Viana R, Garcia-Gimeno MA.
    Exp Suppl; 2016 May 01; 107():353-374. PubMed ID: 27812987
    [Abstract] [Full Text] [Related]

  • 7. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex.
    Yang X, Jiang R, Carlson M.
    EMBO J; 1994 Dec 15; 13(24):5878-86. PubMed ID: 7813428
    [Abstract] [Full Text] [Related]

  • 8. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8.
    Young ET, Dombek KM, Tachibana C, Ideker T.
    J Biol Chem; 2003 Jul 11; 278(28):26146-58. PubMed ID: 12676948
    [Abstract] [Full Text] [Related]

  • 9. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4.
    Vincent O, Carlson M.
    EMBO J; 1999 Dec 01; 18(23):6672-81. PubMed ID: 10581241
    [Abstract] [Full Text] [Related]

  • 10. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F, Pautasso C, Reca S, Cañonero L, Portela P, Moreno S, Rossi S.
    Yeast; 2017 Dec 01; 34(12):495-508. PubMed ID: 28812308
    [Abstract] [Full Text] [Related]

  • 11. Transcriptional regulation of nonfermentable carbon utilization in budding yeast.
    Turcotte B, Liang XB, Robert F, Soontorngun N.
    FEMS Yeast Res; 2010 Feb 01; 10(1):2-13. PubMed ID: 19686338
    [Abstract] [Full Text] [Related]

  • 12. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits.
    Daniel T, Carling D.
    Biochem J; 2002 Aug 01; 365(Pt 3):629-38. PubMed ID: 11971761
    [Abstract] [Full Text] [Related]

  • 13. Snf1 dependence of peroxisomal gene expression is mediated by Adr1.
    Ratnakumar S, Young ET.
    J Biol Chem; 2010 Apr 02; 285(14):10703-14. PubMed ID: 20139423
    [Abstract] [Full Text] [Related]

  • 14. beta-subunits of Snf1 kinase are required for kinase function and substrate definition.
    Schmidt MC, McCartney RR.
    EMBO J; 2000 Sep 15; 19(18):4936-43. PubMed ID: 10990457
    [Abstract] [Full Text] [Related]

  • 15. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8.
    Rahner A, Schöler A, Martens E, Gollwitzer B, Schüller HJ.
    Nucleic Acids Res; 1996 Jun 15; 24(12):2331-7. PubMed ID: 8710504
    [Abstract] [Full Text] [Related]

  • 16. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O, Vincent O, Gancedo JM.
    Biochem J; 2001 Oct 01; 359(Pt 1):193-201. PubMed ID: 11563983
    [Abstract] [Full Text] [Related]

  • 17. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q.
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571
    [Abstract] [Full Text] [Related]

  • 18. Genome-wide location analysis reveals an important overlap between the targets of the yeast transcriptional regulators Rds2 and Adr1.
    Soontorngun N, Baramee S, Tangsombatvichit C, Thepnok P, Cheevadhanarak S, Robert F, Turcotte B.
    Biochem Biophys Res Commun; 2012 Jul 13; 423(4):632-7. PubMed ID: 22687600
    [Abstract] [Full Text] [Related]

  • 19. Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements.
    Hiesinger M, Roth S, Meissner E, Schüller HJ.
    Curr Genet; 2001 Apr 13; 39(2):68-76. PubMed ID: 11405098
    [Abstract] [Full Text] [Related]

  • 20. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö, Nielsen J.
    FEMS Yeast Res; 2015 Sep 13; 15(6):. PubMed ID: 26205245
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.