These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 12716044
1. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada. Li YR, Li YF, Struger J, Chen B, Huang GH. J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044 [Abstract] [Full Text] [Related]
2. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands. Li YR, Huang GH, Li YF, Struger J, Fischer JD. Water Sci Technol; 2003 May; 47(1):33-40. PubMed ID: 12578171 [Abstract] [Full Text] [Related]
5. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M, Heathman GC, Norton LD, Engel B. J Environ Qual; 2007 May; 36(2):521-31. PubMed ID: 17332256 [Abstract] [Full Text] [Related]
6. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff. Shipitalo MJ, Owens LB. J Environ Qual; 2006 May; 35(6):2186-94. PubMed ID: 17071888 [Abstract] [Full Text] [Related]
9. Watershed monitoring to address contamination source issues and remediation of the contaminant impairments. Barnes PL, Kalita PK. Water Sci Technol; 2001 May; 44(7):51-6. PubMed ID: 11724494 [Abstract] [Full Text] [Related]
10. Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed. Blanchoud H, Moreau-Guigon E, Farrugia F, Chevreuil M, Mouchel JM. Sci Total Environ; 2007 Apr 01; 375(1-3):168-79. PubMed ID: 17258293 [Abstract] [Full Text] [Related]
11. Pesticide application and detection in variable agricultural intensity watersheds and their river systems in the maritime region of Canada. Xing Z, Chow L, Cook A, Benoy G, Rees H, Ernst B, Meng F, Li S, Zha T, Murphy C, Batchelor S, Hewitt LM. Arch Environ Contam Toxicol; 2012 Nov 01; 63(4):471-83. PubMed ID: 22903630 [Abstract] [Full Text] [Related]
12. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model. Nakano Y, Yoshida T, Inoue T. Water Res; 2004 Jul 01; 38(13):3023-30. PubMed ID: 15261540 [Abstract] [Full Text] [Related]
14. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation. Abdel-Rahman AR, Wauchope RD, Truman CC, Dowler CC. J Environ Sci Health B; 1999 May 01; 34(3):381-96. PubMed ID: 10227190 [Abstract] [Full Text] [Related]
15. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y, Zhang M. J Environ Qual; 2009 May 01; 38(2):664-74. PubMed ID: 19244487 [Abstract] [Full Text] [Related]
17. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED, Siewicki TC. Sci Total Environ; 2008 Jan 15; 389(1):87-100. PubMed ID: 17904201 [Abstract] [Full Text] [Related]
18. Pesticides in fluvial wetlands catchments under intensive agricultural activities. Poissant L, Beauvais C, Lafrance P, Deblois C. Sci Total Environ; 2008 Oct 01; 404(1):182-95. PubMed ID: 18621412 [Abstract] [Full Text] [Related]
19. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots. Ma Q, Wauchope RD, Ma L, Rojas KW, Malone RW, Ahuja LR. Pest Manag Sci; 2004 Mar 01; 60(3):267-76. PubMed ID: 15025238 [Abstract] [Full Text] [Related]
20. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Luo Y, Zhang M. Environ Pollut; 2009 Dec 01; 157(12):3370-8. PubMed ID: 19616876 [Abstract] [Full Text] [Related] Page: [Next] [New Search]