These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


573 related items for PubMed ID: 12719246

  • 21. Calcium regulation of muscle contraction.
    Szent-Györgyi AG.
    Biophys J; 1975 Jul; 15(7):707-23. PubMed ID: 806311
    [Abstract] [Full Text] [Related]

  • 22. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex.
    Hill TL, Eisenberg E, Greene L.
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3186-90. PubMed ID: 10627230
    [Abstract] [Full Text] [Related]

  • 23. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments.
    Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R.
    J Mol Biol; 2000 Sep 22; 302(3):593-606. PubMed ID: 10986121
    [Abstract] [Full Text] [Related]

  • 24. A cellular automaton model for the regulatory behavior of muscle thin filaments.
    Zou G, Phillips GN.
    Biophys J; 1994 Jul 22; 67(1):11-28. PubMed ID: 7918978
    [Abstract] [Full Text] [Related]

  • 25. An atomic model of the thin filament in the relaxed and Ca2+-activated states.
    Pirani A, Vinogradova MV, Curmi PM, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W.
    J Mol Biol; 2006 Mar 31; 357(3):707-17. PubMed ID: 16469331
    [Abstract] [Full Text] [Related]

  • 26. Binding of troponin I and the troponin I-troponin C complex to actin-tropomyosin. Dissociation by myosin subfragment 1.
    Zhou X, Morris EP, Lehrer SS.
    Biochemistry; 2000 Feb 08; 39(5):1128-32. PubMed ID: 10653659
    [Abstract] [Full Text] [Related]

  • 27. The DNase-I binding loop of actin may play a role in the regulation of actin-myosin interaction by tropomyosin/troponin.
    Moraczewska J, Gruszczynska-Biegala J, Redowicz MJ, Khaitlina SY, Strzelecka-Golaszewska H.
    J Biol Chem; 2004 Jul 23; 279(30):31197-204. PubMed ID: 15159400
    [Abstract] [Full Text] [Related]

  • 28. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A, Peyser YM, Nili M, Ajtai K, Reisler E, Burghardt TP.
    Biophys J; 2003 Feb 23; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [Abstract] [Full Text] [Related]

  • 29. The unit event of sliding of the chemo-mechanical enzyme composed of myosin and actin with regulatory proteins.
    Oosawa F.
    Biochem Biophys Res Commun; 2008 Apr 25; 369(1):144-8. PubMed ID: 18157940
    [Abstract] [Full Text] [Related]

  • 30. Caldesmon restricts the movement of both C- and N-termini of tropomyosin on F-actin in ghost fibers during the actomyosin ATPase cycle.
    Kulikova N, Pronina OE, Dabrowska R, Borovikov YS.
    Biochem Biophys Res Commun; 2006 Jun 23; 345(1):280-6. PubMed ID: 16678131
    [Abstract] [Full Text] [Related]

  • 31. Regulation of muscle contraction: bindings of troponin and its components to actin and tropomyosin.
    Hitchcock SE.
    Eur J Biochem; 1975 Mar 17; 52(2):255-63. PubMed ID: 126151
    [Abstract] [Full Text] [Related]

  • 32. The regulatory effects of tropomyosin and troponin-I on the interaction of myosin loop regions with F-actin.
    Patchell VB, Gallon CE, Evans JS, Gao Y, Perry SV, Levine BA.
    J Biol Chem; 2005 Apr 15; 280(15):14469-75. PubMed ID: 15695827
    [Abstract] [Full Text] [Related]

  • 33. Basic residues within the cardiac troponin T C terminus are required for full inhibition of muscle contraction and limit activation by calcium.
    Johnson D, Zhu L, Landim-Vieira M, Pinto JR, Chalovich JM.
    J Biol Chem; 2019 Dec 20; 294(51):19535-19545. PubMed ID: 31712308
    [Abstract] [Full Text] [Related]

  • 34. Tropomyosin as a regulator of the sliding movement of actin filaments.
    Mizuno H, Hamada A, Shimada K, Honda H.
    Biosystems; 2007 Dec 20; 90(2):449-55. PubMed ID: 17184900
    [Abstract] [Full Text] [Related]

  • 35. A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament.
    Miki M, Makimura S, Sugahara Y, Yamada R, Bunya M, Saitoh T, Tobita H.
    J Mol Biol; 2012 Jun 29; 420(1-2):40-55. PubMed ID: 22484177
    [Abstract] [Full Text] [Related]

  • 36. Functions of tropomyosin's periodic repeats.
    Hitchcock-DeGregori SE, Song Y, Greenfield NJ.
    Biochemistry; 2002 Dec 17; 41(50):15036-44. PubMed ID: 12475253
    [Abstract] [Full Text] [Related]

  • 37. Anti-peptide monoclonal antibody imaging of a common binding domain involved in muscle regulation.
    Van Eyk JE, Caday-Malcolm RA, Yu L, Irvin RT, Hodges RS.
    Protein Sci; 1995 Apr 17; 4(4):781-90. PubMed ID: 7613476
    [Abstract] [Full Text] [Related]

  • 38. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex.
    Kimura-Sakiyama C, Ueno Y, Wakabayashi K, Miki M.
    J Mol Biol; 2008 Feb 08; 376(1):80-91. PubMed ID: 18155235
    [Abstract] [Full Text] [Related]

  • 39. Structural basis for the higher Ca(2+)-activation of the regulated actin-activated myosin ATPase observed with Dictyostelium/Tetrahymena actin chimeras.
    Matsuura Y, Stewart M, Kawamoto M, Kamiya N, Saeki K, Yasunaga T, Wakabayashi T.
    J Mol Biol; 2000 Feb 18; 296(2):579-95. PubMed ID: 10669610
    [Abstract] [Full Text] [Related]

  • 40. Structural and functional domains of the troponin complex revealed by limited digestion.
    Takeda S, Kobayashi T, Taniguchi H, Hayashi H, Maéda Y.
    Eur J Biochem; 1997 Jun 15; 246(3):611-7. PubMed ID: 9219516
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.