These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


500 related items for PubMed ID: 12719487

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Water permeation through gramicidin A: desformylation and the double helix: a molecular dynamics study.
    de Groot BL, Tieleman DP, Pohl P, Grubmüller H.
    Biophys J; 2002 Jun; 82(6):2934-42. PubMed ID: 12023216
    [Abstract] [Full Text] [Related]

  • 46. Low free energy barrier for ion permeation through double-helical gramicidin.
    Siu SW, Böckmann RA.
    J Phys Chem B; 2009 Mar 12; 113(10):3195-202. PubMed ID: 19708166
    [Abstract] [Full Text] [Related]

  • 47. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.
    Rokitskaya TI, Antonenko YN, Kotova EA.
    Biophys J; 1997 Aug 12; 73(2):850-4. PubMed ID: 9251801
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Screening for small molecules' bilayer-modifying potential using a gramicidin-based fluorescence assay.
    Ingólfsson HI, Andersen OS.
    Assay Drug Dev Technol; 2010 Aug 12; 8(4):427-36. PubMed ID: 20233091
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S, Shirai O, Kitazumi Y, Kano K.
    Anal Sci; 2016 Aug 12; 32(2):189-92. PubMed ID: 26860564
    [Abstract] [Full Text] [Related]

  • 53. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM, Antonenko YN, Koeppe RE, Pohl P.
    Biophys J; 2000 Nov 12; 79(5):2526-34. PubMed ID: 11053127
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Theoretical study of the structure and dynamic fluctuations of dioxolane-linked gramicidin channels.
    Yu CH, Cukierman S, Pomès R.
    Biophys J; 2003 Feb 12; 84(2 Pt 1):816-31. PubMed ID: 12547766
    [Abstract] [Full Text] [Related]

  • 57. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods.
    Matsuno Y, Osono C, Hirano A, Sugawara M.
    Anal Sci; 2004 Aug 12; 20(8):1217-21. PubMed ID: 15352514
    [Abstract] [Full Text] [Related]

  • 58. Gramicidin channels that have no tryptophan residues.
    Fonseca V, Daumas P, Ranjalahy-Rasoloarijao L, Heitz F, Lazaro R, Trudelle Y, Andersen OS.
    Biochemistry; 1992 Jun 16; 31(23):5340-50. PubMed ID: 1376621
    [Abstract] [Full Text] [Related]

  • 59. pH-Dependent properties of ion channels formed by N-terminally glutamate substituted gramicidin A in planar lipid bilayers.
    Chistyulin DK, Rokitskaya TI, Kovalchuk SI, Sorochkina AI, Firsov AM, Kotova EA, Antonenko YN.
    Biochim Biophys Acta Biomembr; 2017 May 16; 1859(5):896-902. PubMed ID: 28188740
    [Abstract] [Full Text] [Related]

  • 60. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes.
    de Godoy CM, Cukierman S.
    Biophys J; 2001 Sep 16; 81(3):1430-8. PubMed ID: 11509357
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.