These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
331 related items for PubMed ID: 12723679
1. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Nowak N, Kakade PP, Annapragada AV. Ann Biomed Eng; 2003 Apr; 31(4):374-90. PubMed ID: 12723679 [Abstract] [Full Text] [Related]
2. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways. Xi J, Longest PW. Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605 [Abstract] [Full Text] [Related]
3. Inertial deposition effects: a study of aerosol mechanics in the trachea using laser Doppler velocimetry and fluorescent dye. Corcoran TE, Chigier N. J Biomech Eng; 2002 Dec; 124(6):629-37. PubMed ID: 12596629 [Abstract] [Full Text] [Related]
4. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation. Kolanjiyil AV, Kleinstreuer C. Comput Biol Med; 2016 Dec 01; 79():193-204. PubMed ID: 27810625 [Abstract] [Full Text] [Related]
5. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree. Isaacs KK, Schlesinger RB, Martonen TB. J Aerosol Med; 2006 Dec 01; 19(3):344-52. PubMed ID: 17034309 [Abstract] [Full Text] [Related]
6. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Rahimi-Gorji M, Gorji TB, Gorji-Bandpy M. Comput Biol Med; 2016 Jul 01; 74():1-17. PubMed ID: 27160637 [Abstract] [Full Text] [Related]
7. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi. Russo J, Robinson R, Oldham MJ. Med Eng Phys; 2008 Jun 01; 30(5):581-9. PubMed ID: 17719260 [Abstract] [Full Text] [Related]
10. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Ahookhosh K, Saidi M, Aminfar H, Mohammadpourfard M, Hamishehkar H, Yaqoubi S. Int J Pharm; 2020 Sep 25; 587():119599. PubMed ID: 32663586 [Abstract] [Full Text] [Related]
11. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Farghadan A, Poorbahrami K, Jalal S, Oakes JM, Coletti F, Arzani A. Comput Biol Med; 2020 May 25; 120():103703. PubMed ID: 32217283 [Abstract] [Full Text] [Related]
12. Unsteady-state airflow and particle deposition in a three-generation human lung geometry. Nazridoust K, Asgharian B. Inhal Toxicol; 2008 Apr 25; 20(6):595-610. PubMed ID: 18444012 [Abstract] [Full Text] [Related]
13. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Kolanjiyil AV, Kleinstreuer C, Sadikot RT. Comput Biol Med; 2017 May 01; 84():247-253. PubMed ID: 27836120 [Abstract] [Full Text] [Related]
18. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model. Verbanck S, Ghorbaniasl G, Biddiscombe MF, Dragojlovic D, Ricks N, Lacor C, Ilsen B, de Mey J, Schuermans D, Underwood SR, Barnes PJ, Vincken W, Usmani OS. J Aerosol Med Pulm Drug Deliv; 2016 Dec 01; 29(6):525-533. PubMed ID: 27337643 [Abstract] [Full Text] [Related]