These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Halbrooks PJ, He QY, Briggs SK, Everse SJ, Smith VC, MacGillivray RT, Mason AB. Biochemistry; 2003 Apr 08; 42(13):3701-7. PubMed ID: 12667060 [Abstract] [Full Text] [Related]
4. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY, Mason AB, Tam BM, MacGillivray RT, Woodworth RC. Biochemistry; 1999 Jul 27; 38(30):9704-11. PubMed ID: 10423249 [Abstract] [Full Text] [Related]
6. Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. MacGillivray RT, Moore SA, Chen J, Anderson BF, Baker H, Luo Y, Bewley M, Smith CA, Murphy ME, Wang Y, Mason AB, Woodworth RC, Brayer GD, Baker EN. Biochemistry; 1998 Jun 02; 37(22):7919-28. PubMed ID: 9609685 [Abstract] [Full Text] [Related]
7. Effect of glycosylation on the function of a soluble, recombinant form of the transferrin receptor. Byrne SL, Leverence R, Klein JS, Giannetti AM, Smith VC, MacGillivray RT, Kaltashov IA, Mason AB. Biochemistry; 2006 May 30; 45(21):6663-73. PubMed ID: 16716077 [Abstract] [Full Text] [Related]
8. The oxalate effect on release of iron from human serum transferrin explained. Halbrooks PJ, Mason AB, Adams TE, Briggs SK, Everse SJ. J Mol Biol; 2004 May 21; 339(1):217-26. PubMed ID: 15123433 [Abstract] [Full Text] [Related]
10. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin. He QY, Mason AB, Woodworth RC, Tam BM, Wadsworth T, MacGillivray RT. Biochemistry; 1997 May 06; 36(18):5522-8. PubMed ID: 9154935 [Abstract] [Full Text] [Related]
12. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Baker HM, He QY, Briggs SK, Mason AB, Baker EN. Biochemistry; 2003 Jun 17; 42(23):7084-9. PubMed ID: 12795604 [Abstract] [Full Text] [Related]
13. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Jeffrey PD, Bewley MC, MacGillivray RT, Mason AB, Woodworth RC, Baker EN. Biochemistry; 1998 Oct 06; 37(40):13978-86. PubMed ID: 9760232 [Abstract] [Full Text] [Related]
15. Unusual features for zirconium(IV) binding to human serum transferrin. Zhong W, Parkinson JA, Guo M, Sadler PJ. J Biol Inorg Chem; 2002 Jun 06; 7(6):589-99. PubMed ID: 12072964 [Abstract] [Full Text] [Related]
16. X-ray crystallography and mass spectroscopy reveal that the N-lobe of human transferrin expressed in Pichia pastoris is folded correctly but is glycosylated on serine-32. Bewley MC, Tam BM, Grewal J, He S, Shewry S, Murphy ME, Mason AB, Woodworth RC, Baker EN, MacGillivray RT. Biochemistry; 1999 Feb 23; 38(8):2535-41. PubMed ID: 10029548 [Abstract] [Full Text] [Related]
17. A kinetically active site in the C-lobe of human transferrin. Zak O, Tam B, MacGillivray RT, Aisen P. Biochemistry; 1997 Sep 09; 36(36):11036-43. PubMed ID: 9283096 [Abstract] [Full Text] [Related]