These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Nielsen R. Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546 [Abstract] [Full Text] [Related]
4. Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa. Rick R, Dörge A, Sesselmann E. Pflugers Arch; 1988 Mar; 411(3):243-51. PubMed ID: 2454448 [Abstract] [Full Text] [Related]
5. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport. Rick R, Dörge A, Thurau K. Soc Gen Physiol Ser; 1981 Mar; 36():197-208. PubMed ID: 6974404 [No Abstract] [Full Text] [Related]
7. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin. Kipnowski J, Passon J, Detjen C, Düsing R, Miederer S, Kramer HJ. Klin Wochenschr; 1986 Aug 15; 64(16):750-9. PubMed ID: 2429018 [Abstract] [Full Text] [Related]
8. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. Ehrenfeld J, Garcia-Romeu F, Harvey BJ. J Physiol; 1985 Feb 15; 359():331-55. PubMed ID: 2582114 [Abstract] [Full Text] [Related]
9. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues. Ehrenfeld J, Cragoe EJ, Harvey BJ. Pflugers Arch; 1987 Jun 15; 409(1-2):200-7. PubMed ID: 3039454 [Abstract] [Full Text] [Related]
10. Na transport stimulation by novobiocin: intracellular ion concentrations and membrane potential. Rick R, Beck FX, Dörge A, Sesselmann E, Thurau K. Pflugers Arch; 1988 May 15; 411(5):505-13. PubMed ID: 3260372 [Abstract] [Full Text] [Related]
11. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase. Harvey B, Lacoste I, Ehrenfeld J. J Gen Physiol; 1991 Apr 15; 97(4):749-76. PubMed ID: 1647438 [Abstract] [Full Text] [Related]
12. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP). Ponec J, Bakos P, Lichardus B. Gen Physiol Biophys; 1989 Jun 15; 8(3):245-55. PubMed ID: 2670663 [Abstract] [Full Text] [Related]
14. The intracellular electrical potential profile of the frog skin epithelium. Nagel W. Pflugers Arch; 1976 Sep 30; 365(2-3):135-43. PubMed ID: 1086460 [Abstract] [Full Text] [Related]
15. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. Fuchs W, Larsen EH, Lindemann B. J Physiol; 1977 May 30; 267(1):137-66. PubMed ID: 301566 [Abstract] [Full Text] [Related]
16. Interference of a short-chain phospholipid with ion transport pathways in frog skin. Unmack MA, Frederiksen O, Willumsen NJ. Pflugers Arch; 1997 Jul 30; 434(3):234-41. PubMed ID: 9178620 [Abstract] [Full Text] [Related]
17. The coupled movements of sodium and chloride across the basolateral membrane of frog skin epithelium. Fernandes PL, Ferreira HG, Ferreira KT. J Physiol; 1989 Sep 30; 416():403-20. PubMed ID: 2607456 [Abstract] [Full Text] [Related]