These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 12741775

  • 1. Genetic engineering of stimuli-sensitive silkelastin-like protein block copolymers.
    Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H.
    Biomacromolecules; 2003; 4(3):602-7. PubMed ID: 12741775
    [Abstract] [Full Text] [Related]

  • 2. Genetic synthesis and characterization of pH- and temperature-sensitive silk-elastinlike protein block copolymers.
    Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H.
    J Biomed Mater Res; 2002 Nov; 62(2):195-203. PubMed ID: 12209939
    [Abstract] [Full Text] [Related]

  • 3. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization.
    Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J, Ghandehari H.
    Mol Pharm; 2005 Nov; 2(2):139-50. PubMed ID: 15804188
    [Abstract] [Full Text] [Related]

  • 4. Genetic engineering of structural protein polymers.
    Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F.
    Biotechnol Prog; 1990 Nov; 6(3):198-202. PubMed ID: 1366613
    [Abstract] [Full Text] [Related]

  • 5. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C, Breedveld V, Kopecek J.
    Biomacromolecules; 2005 Nov; 6(3):1739-49. PubMed ID: 15877401
    [Abstract] [Full Text] [Related]

  • 6. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering.
    Reiersen H, Clarke AR, Rees AR.
    J Mol Biol; 1998 Nov; 283(1):255-64. PubMed ID: 9761688
    [Abstract] [Full Text] [Related]

  • 7. Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality.
    Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W.
    Biomacromolecules; 2007 Dec; 8(12):3736-9. PubMed ID: 18039006
    [Abstract] [Full Text] [Related]

  • 8. Fibril formation by pH and temperature responsive silk-elastin block copolymers.
    Golinska MD, Pham TT, Werten MW, de Wolf FA, Cohen Stuart MA, van der Gucht J.
    Biomacromolecules; 2013 Jan 14; 14(1):48-55. PubMed ID: 23214439
    [Abstract] [Full Text] [Related]

  • 9. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide.
    Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A.
    Biomacromolecules; 2011 Aug 08; 12(8):2957-65. PubMed ID: 21707089
    [Abstract] [Full Text] [Related]

  • 10. Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel.
    Dinerman AA, Cappello J, Ghandehari H, Hoag SW.
    Biomaterials; 2002 Nov 08; 23(21):4203-10. PubMed ID: 12194523
    [Abstract] [Full Text] [Related]

  • 11. Genetically engineered polymers: status and prospects for controlled release.
    Haider M, Megeed Z, Ghandehari H.
    J Control Release; 2004 Feb 20; 95(1):1-26. PubMed ID: 15013229
    [Abstract] [Full Text] [Related]

  • 12. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery.
    Megeed Z, Cappello J, Ghandehari H.
    Adv Drug Deliv Rev; 2002 Oct 18; 54(8):1075-91. PubMed ID: 12384308
    [Abstract] [Full Text] [Related]

  • 13. Synthesis and characterization of a matrix-metalloproteinase responsive silk-elastinlike protein polymer.
    Gustafson JA, Price RA, Frandsen J, Henak CR, Cappello J, Ghandehari H.
    Biomacromolecules; 2013 Mar 11; 14(3):618-25. PubMed ID: 23369048
    [Abstract] [Full Text] [Related]

  • 14. Effect of protein fusion on the transition temperature of an environmentally responsive elastin-like polypeptide: a role for surface hydrophobicity?
    Trabbic-Carlson K, Meyer DE, Liu L, Piervincenzi R, Nath N, LaBean T, Chilkoti A.
    Protein Eng Des Sel; 2004 Jan 11; 17(1):57-66. PubMed ID: 14985538
    [Abstract] [Full Text] [Related]

  • 15. Molecularly designed water soluble, intelligent, nanosize polymeric carriers.
    Pişkin E.
    Int J Pharm; 2004 Jun 11; 277(1-2):105-18. PubMed ID: 15158974
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent.
    Yusa S, Fukuda K, Yamamoto T, Ishihara K, Morishima Y.
    Biomacromolecules; 2005 Jun 11; 6(2):663-70. PubMed ID: 15762627
    [Abstract] [Full Text] [Related]

  • 17. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences.
    Wright ER, Conticello VP.
    Adv Drug Deliv Rev; 2002 Oct 18; 54(8):1057-73. PubMed ID: 12384307
    [Abstract] [Full Text] [Related]

  • 18. Characterization of glutamine deamidation in a long, repetitive protein polymer via bioconjugate capillary electrophoresis.
    Won JI, Meagher RJ, Barron AE.
    Biomacromolecules; 2004 Oct 18; 5(2):618-27. PubMed ID: 15003029
    [Abstract] [Full Text] [Related]

  • 19. Self-assembly of genetically engineered spider silk block copolymers.
    Rabotyagova OS, Cebe P, Kaplan DL.
    Biomacromolecules; 2009 Feb 09; 10(2):229-36. PubMed ID: 19128057
    [Abstract] [Full Text] [Related]

  • 20. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH.
    Chen G, Hoffman AS.
    Nature; 1995 Jan 05; 373(6509):49-52. PubMed ID: 7800038
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.