These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 12745255
1. Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Moghaddas S, Hoppel CL, Lesnefsky EJ. Arch Biochem Biophys; 2003 Jun 01; 414(1):59-66. PubMed ID: 12745255 [Abstract] [Full Text] [Related]
2. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool. Marres CA, de Vries S. Biochim Biophys Acta; 1991 Mar 01; 1057(1):51-63. PubMed ID: 1849003 [Abstract] [Full Text] [Related]
3. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. Matsuno-Yagi A, Hatefi Y. J Biol Chem; 2001 Jun 01; 276(22):19006-11. PubMed ID: 11262412 [Abstract] [Full Text] [Related]
4. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Turrens JF, Alexandre A, Lehninger AL. Arch Biochem Biophys; 1985 Mar 01; 237(2):408-14. PubMed ID: 2983613 [Abstract] [Full Text] [Related]
5. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. Matsuno-Yagi A, Hatefi Y. J Biol Chem; 1996 Mar 15; 271(11):6164-71. PubMed ID: 8626405 [Abstract] [Full Text] [Related]
6. Mutants of ubiquinol-cytochrome c2 oxidoreductase resistant to Qo site inhibitors: consequences for ubiquinone and ubiquinol affinity and catalysis. Robertson DE, Daldal F, Dutton PL. Biochemistry; 1990 Dec 25; 29(51):11249-60. PubMed ID: 2176897 [Abstract] [Full Text] [Related]
7. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III. Korge P, Calmettes G, John SA, Weiss JN. J Biol Chem; 2017 Jun 16; 292(24):9882-9895. PubMed ID: 28450391 [Abstract] [Full Text] [Related]
8. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. Lesnefsky EJ, Gudz TI, Moghaddas S, Migita CT, Ikeda-Saito M, Turkaly PJ, Hoppel CL. J Mol Cell Cardiol; 2001 Jan 16; 33(1):37-47. PubMed ID: 11133221 [Abstract] [Full Text] [Related]
9. Molecular basis for resistance to antimycin and diuron, Q-cycle inhibitors acting at the Qi site in the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. di Rago JP, Colson AM. J Biol Chem; 1988 Sep 05; 263(25):12564-70. PubMed ID: 2842335 [Abstract] [Full Text] [Related]
10. Ischemia-reperfusion injury in the aged heart: role of mitochondria. Lesnefsky EJ, Hoppel CL. Arch Biochem Biophys; 2003 Dec 15; 420(2):287-97. PubMed ID: 14654068 [Abstract] [Full Text] [Related]
11. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria. Zhu QS, Beattie DS. Biochim Biophys Acta; 1988 Jul 27; 934(3):303-13. PubMed ID: 2840117 [Abstract] [Full Text] [Related]
12. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein. Japa S, Beattie DS. J Biol Chem; 1989 Aug 25; 264(24):13994-7. PubMed ID: 2547777 [Abstract] [Full Text] [Related]
13. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Beattie DS, Japa S, Howton M, Zhu QS. Arch Biochem Biophys; 1992 Feb 01; 292(2):499-505. PubMed ID: 1309974 [Abstract] [Full Text] [Related]
14. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes. Tolkatchev D, Yu L, Yu CA. J Biol Chem; 1996 May 24; 271(21):12356-63. PubMed ID: 8647838 [Abstract] [Full Text] [Related]
15. Electron conduction between b cytochromes of the mitochondrial respiratory chain in the presence of antimycin plus myxothiazol. West IC, Mitchell P, Rich PR. Biochim Biophys Acta; 1988 Mar 30; 933(1):35-41. PubMed ID: 3349068 [Abstract] [Full Text] [Related]
16. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. Tang HL, Trumpower BL. J Biol Chem; 1986 May 15; 261(14):6209-15. PubMed ID: 3009448 [Abstract] [Full Text] [Related]
17. Electron transfer through the isolated mitochondrial cytochrome b-c1 complex. Rich PR. Biochim Biophys Acta; 1983 Feb 17; 722(2):271-80. PubMed ID: 6301551 [Abstract] [Full Text] [Related]
18. Electrochemical and spectral analysis of the long-range interactions between the Qo and Qi sites and the heme prosthetic groups in ubiquinol-cytochrome c oxidoreductase. Howell N, Robertson DE. Biochemistry; 1993 Oct 19; 32(41):11162-72. PubMed ID: 8218179 [Abstract] [Full Text] [Related]
19. Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Muller F, Crofts AR, Kramer DM. Biochemistry; 2002 Jun 25; 41(25):7866-74. PubMed ID: 12069575 [Abstract] [Full Text] [Related]
20. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Muller FL, Roberts AG, Bowman MK, Kramer DM. Biochemistry; 2003 Jun 03; 42(21):6493-9. PubMed ID: 12767232 [Abstract] [Full Text] [Related] Page: [Next] [New Search]