These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 12745434
21. Finite element modeling of trabecular bone damage. Kosmopoulos V, Keller TS. Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432 [Abstract] [Full Text] [Related]
23. Evaluation of bone plate with low-stiffness material in terms of stress distribution. Benli S, Aksoy S, Havitcioğlu H, Kucuk M. J Biomech; 2008 Nov 14; 41(15):3229-35. PubMed ID: 18805533 [Abstract] [Full Text] [Related]
24. Computational comparison of reamed versus unreamed intramedullary tibial nails. Gómez-Benito MJ, Fornells P, García-Aznar JM, Seral B, Seral-Iñnigo F, Doblaré M. J Orthop Res; 2007 Feb 14; 25(2):191-200. PubMed ID: 17089377 [Abstract] [Full Text] [Related]
25. Predicting the external formation of a bone fracture callus: an optimisation approach. Comiskey DP, MacDonald BJ, McCartney WT, Synnott K, O'Byrne J. Comput Methods Biomech Biomed Engin; 2012 Feb 14; 15(7):779-85. PubMed ID: 21614706 [Abstract] [Full Text] [Related]
26. Optimization of intramedullary nailing by numerical simulation of fracture healing. Wehner T, Claes L, Ignatius A, Simon U. J Orthop Res; 2012 Apr 14; 30(4):569-73. PubMed ID: 22002798 [Abstract] [Full Text] [Related]
27. A multidirectional fracture stiffness model to determine the principal stiffness properties of a healing human tibia. Ogrodnik PJ, Thomas PB, Moorcroft CI, Mohammed KN. Proc Inst Mech Eng H; 2013 Oct 14; 227(10):1125-34. PubMed ID: 23886971 [Abstract] [Full Text] [Related]
28. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus. Gardner TN, Mishra S, Marks L. Med Eng Phys; 2004 Jul 14; 26(6):493-501. PubMed ID: 15234685 [Abstract] [Full Text] [Related]
30. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M, Goulet JA, Weiss JA, Waanders NA, Schaffler MB, Goldstein SA. Clin Orthop Relat Res; 1998 Oct 14; (355 Suppl):S191-204. PubMed ID: 9917639 [Abstract] [Full Text] [Related]
31. Finite element modeling of the influence of hand position and bone properties on the Colles' fracture load during a fall. Buchanan D, Ural A. J Biomech Eng; 2010 Aug 14; 132(8):081007. PubMed ID: 20670056 [Abstract] [Full Text] [Related]
32. Mechanical conditions in the initial phase of bone healing. Epari DR, Taylor WR, Heller MO, Duda GN. Clin Biomech (Bristol); 2006 Jul 14; 21(6):646-55. PubMed ID: 16513229 [Abstract] [Full Text] [Related]
33. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method. Sonoda N, Chosa E, Totoribe K, Tajima N. J Orthop Sci; 2003 Jul 14; 8(4):505-13. PubMed ID: 12898301 [Abstract] [Full Text] [Related]
36. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling. Fouad H. Med Eng Phys; 2011 May 14; 33(4):456-63. PubMed ID: 21146439 [Abstract] [Full Text] [Related]
37. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. Perillo-Marcone A, Taylor M. J Biomech Eng; 2007 Feb 14; 129(1):1-11. PubMed ID: 17227092 [Abstract] [Full Text] [Related]
40. Validation of a finite element model of the human metacarpal. Barker DS, Netherway DJ, Krishnan J, Hearn TC. Med Eng Phys; 2005 Mar 14; 27(2):103-13. PubMed ID: 15642506 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]