These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 12747693
21. Lag time variability in individual spores of Clostridium botulinum. Stringer SC, Webb MD, Peck MW. Food Microbiol; 2011 Apr; 28(2):228-35. PubMed ID: 21315978 [Abstract] [Full Text] [Related]
22. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef. Juneja VK, Purohit AS, Golden M, Osoria M, Glass KA, Mishra A, Thippareddi H, Devkumar G, Mohr TB, Minocha U, Silverman M, Schaffner DW. Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576 [Abstract] [Full Text] [Related]
23. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum. Reddy NR, Marshall KM, Morrissey TR, Loeza V, Patazca E, Skinner GE, Krishnamurthy K, Larkin JW. J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794 [Abstract] [Full Text] [Related]
24. Inhibition of germinant binding by bacterial spores in acidic environments. Blocher JC, Busta FF. Appl Environ Microbiol; 1985 Aug; 50(2):274-9. PubMed ID: 3931549 [Abstract] [Full Text] [Related]
25. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts. Sánchez-Plata MX, Amézquita A, Blankenship E, Burson DE, Juneja V, Thippareddi H. J Food Prot; 2005 Dec; 68(12):2594-605. PubMed ID: 16355831 [Abstract] [Full Text] [Related]
26. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW, Fernandez PS. Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [Abstract] [Full Text] [Related]
27. Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse. Sofos JN, Busta FF, Allen CE. Appl Environ Microbiol; 1979 Jun; 37(6):1103-9. PubMed ID: 384904 [Abstract] [Full Text] [Related]
29. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR, Tetzloff RC, Skinner GE. Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [Abstract] [Full Text] [Related]
30. High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG. Appl Environ Microbiol; 2006 May; 72(5):3476-81. PubMed ID: 16672493 [Abstract] [Full Text] [Related]
31. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line. Guinebretiere MH, Girardin H, Dargaignaratz C, Carlin F, Nguyen-The C. Int J Food Microbiol; 2003 May 15; 82(3):223-32. PubMed ID: 12593925 [Abstract] [Full Text] [Related]
32. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures. Carlin F, Peck MW. Appl Environ Microbiol; 1996 Aug 15; 62(8):3069-72. PubMed ID: 8702303 [Abstract] [Full Text] [Related]
34. Growth and toxin production by Clostridium botulinum on sliced raw potatoes in a modified atmosphere with and without sulfite. Solomon HM, Rhodehamel EJ, Kautter DA. J Food Prot; 1998 Jan 15; 61(1):126-8. PubMed ID: 9708268 [Abstract] [Full Text] [Related]
36. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens. Huang L. Food Res Int; 2018 May 15; 107():248-256. PubMed ID: 29580482 [Abstract] [Full Text] [Related]