These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 12750895
1. Elimination of response latency variability in neuronal spike trains. Nawrot MP, Aertsen A, Rotter S. Biol Cybern; 2003 May; 88(5):321-34. PubMed ID: 12750895 [Abstract] [Full Text] [Related]
2. Trial-by-trial estimation of amplitude and latency variability in neuronal spike trains. Bollimunta A, Knuth KH, Ding M. J Neurosci Methods; 2007 Feb 15; 160(1):163-70. PubMed ID: 17000007 [Abstract] [Full Text] [Related]
3. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS. Neural Comput; 2004 Oct 15; 16(10):2125-95. PubMed ID: 15333210 [Abstract] [Full Text] [Related]
4. First-spike latency in the presence of spontaneous activity. Pawlas Z, Klebanov LB, Benes V, Prokesová M, Popelár J, Lánský P. Neural Comput; 2010 Jul 15; 22(7):1675-97. PubMed ID: 20235823 [Abstract] [Full Text] [Related]
7. Time is a rubberband: neuronal activity in monkey motor cortex in relation to time estimation. Renoult L, Roux S, Riehle A. Eur J Neurosci; 2006 Jun 15; 23(11):3098-108. PubMed ID: 16820000 [Abstract] [Full Text] [Related]
8. Estimating receptive fields in the presence of spike-time jitter. Gollisch T. Network; 2006 Jun 15; 17(2):103-29. PubMed ID: 16818393 [Abstract] [Full Text] [Related]
9. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. Vogel A, Hennig RM, Ronacher B. J Neurophysiol; 2005 Jun 15; 93(6):3548-59. PubMed ID: 15716366 [Abstract] [Full Text] [Related]
10. Trial-to-trial variability and its effect on time-varying dependency between two neurons. Ventura V, Cai C, Kass RE. J Neurophysiol; 2005 Oct 15; 94(4):2928-39. PubMed ID: 16160096 [Abstract] [Full Text] [Related]
11. Use of 'relative-phase' analysis to assess correlation between neuronal spike trains. Chen Y, Nitz DA. Biol Cybern; 2003 Mar 15; 88(3):177-82. PubMed ID: 12647225 [Abstract] [Full Text] [Related]
12. Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. DiCarlo JJ, Maunsell JH. J Neurophysiol; 2005 May 15; 93(5):2974-86. PubMed ID: 15548629 [Abstract] [Full Text] [Related]
13. Measurement of variability dynamics in cortical spike trains. Nawrot MP, Boucsein C, Rodriguez Molina V, Riehle A, Aertsen A, Rotter S. J Neurosci Methods; 2008 Apr 30; 169(2):374-90. PubMed ID: 18155774 [Abstract] [Full Text] [Related]
15. Correlation between neural spike trains increases with firing rate. de la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A. Nature; 2007 Aug 16; 448(7155):802-6. PubMed ID: 17700699 [Abstract] [Full Text] [Related]
16. Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Grün S, Diesmann M, Aertsen A. Neural Comput; 2002 Jan 16; 14(1):81-119. PubMed ID: 11747535 [Abstract] [Full Text] [Related]
17. An improved method for the estimation of firing rate dynamics using an optimal digital filter. Cherif S, Cullen KE, Galiana HL. J Neurosci Methods; 2008 Aug 15; 173(1):165-81. PubMed ID: 18577401 [Abstract] [Full Text] [Related]
18. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli. Schaette R, Gollisch T, Herz AV. J Neurophysiol; 2005 Jun 15; 93(6):3270-81. PubMed ID: 15689392 [Abstract] [Full Text] [Related]