These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Seasonal variation of the ¹³⁷Cs level and its relationship with potassium and carbon levels in conifer needles. Rantavaara A, Vetikko V, Raitio H, Aro L. Sci Total Environ; 2012 Dec 15; 441():194-208. PubMed ID: 23137985 [Abstract] [Full Text] [Related]
8. Effects of NaCl on responses of ectomycorrhizal black spruce (Picea mariana), white spruce (Picea glauca) and jack pine (Pinus banksiana) to fluoride. Calvo-Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD. Physiol Plant; 2009 Jan 15; 135(1):51-61. PubMed ID: 19121099 [Abstract] [Full Text] [Related]
10. Accumulation of airborne hexachlorocyclohexanes and DDT in pine needles. Kylin H, Sjödin A. Environ Sci Technol; 2003 Jun 01; 37(11):2350-5. PubMed ID: 12831016 [Abstract] [Full Text] [Related]
11. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Sah SP, Ilvesniemi H. Isotopes Environ Health Stud; 2006 Dec 01; 42(4):367-77. PubMed ID: 17090488 [Abstract] [Full Text] [Related]
12. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics. Kivimäenpää M, Selldén G, Sutinen S. Environ Pollut; 2005 Oct 01; 137(3):466-75. PubMed ID: 16005759 [Abstract] [Full Text] [Related]
13. Atmospheric deposition of heavy metals in Thrace studied by analysis of Austrian pine (Pinus nigra) needles. Coşkun M. Bull Environ Contam Toxicol; 2006 Feb 01; 76(2):320-6. PubMed ID: 16468013 [No Abstract] [Full Text] [Related]
14. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Turtola S, Sallas L, Holopainen JK, Julkunen-Tiitto R, Kainulainen P. Environ Pollut; 2006 Nov 01; 144(1):166-71. PubMed ID: 16515828 [Abstract] [Full Text] [Related]
15. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valerio F. Environ Pollut; 2005 Jan 01; 133(2):293-301. PubMed ID: 15519460 [Abstract] [Full Text] [Related]
16. Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Poland--concentrations and patterns in view of long-term environmental monitoring. Wyrzykowska B, Hanari N, Orlikowska A, Bochentin I, Rostkowski P, Falandysz J, Taniyasu S, Horii Y, Jiang Q, Yamashita N. Chemosphere; 2007 Apr 01; 67(9):1877-86. PubMed ID: 17207518 [Abstract] [Full Text] [Related]
18. Biomonitoring of pesticides by pine needles--chemical scoring, risk of exposure, levels and trends. Ratola N, Homem V, Silva JA, Araújo R, Amigo JM, Santos L, Alves A. Sci Total Environ; 2014 Apr 01; 476-477():114-24. PubMed ID: 24463249 [Abstract] [Full Text] [Related]
19. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS, Ostonen I, Lõhmus K, Derome J, Lindroos AJ, Merilä P, Nöjd P. Tree Physiol; 2009 Mar 01; 29(3):445-56. PubMed ID: 19203968 [Abstract] [Full Text] [Related]
20. Distribution of persistent organohalogen compounds in pine needles from selected locations in Kentucky and Georgia, USA. Loganathan BG, Kumar KS, Seaford KD, Sajwan KS, Hanari N, Yamashita N. Arch Environ Contam Toxicol; 2008 Apr 01; 54(3):422-39. PubMed ID: 17928938 [Abstract] [Full Text] [Related] Page: [Next] [New Search]