These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 12758080

  • 1. Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct.
    Choe J, Guerra D, Michels PA, Hol WG.
    J Mol Biol; 2003 May 30; 329(2):335-49. PubMed ID: 12758080
    [Abstract] [Full Text] [Related]

  • 2. A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana.
    Suresh S, Turley S, Opperdoes FR, Michels PA, Hol WG.
    Structure; 2000 May 15; 8(5):541-52. PubMed ID: 10801498
    [Abstract] [Full Text] [Related]

  • 3. Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies.
    Mydy LS, Cristobal JR, Katigbak RD, Bauer P, Reyes AC, Kamerlin SCL, Richard JP, Gulick AM.
    Biochemistry; 2019 Feb 26; 58(8):1061-1073. PubMed ID: 30640445
    [Abstract] [Full Text] [Related]

  • 4. Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana.
    Costa CHSD, Bichara TW, Gomes GC, Dos Santos AM, da Costa KS, Lima AHLE, Alves CN, Lameira J.
    J Biomol Struct Dyn; 2021 Apr 26; 39(6):2044-2055. PubMed ID: 32174264
    [Abstract] [Full Text] [Related]

  • 5. Homology modeling and molecular dynamics study of NAD-dependent glycerol-3-phosphate dehydrogenase from Trypanosoma brucei rhodesiense, a potential target enzyme for anti-sleeping sickness drug development.
    Zubrzycki IZ.
    Biophys J; 2002 Jun 26; 82(6):2906-15. PubMed ID: 12023213
    [Abstract] [Full Text] [Related]

  • 6. The unusual di-domain structure of Dunaliella salina glycerol-3-phosphate dehydrogenase enables direct conversion of dihydroxyacetone phosphate to glycerol.
    He Q, Toh JD, Ero R, Qiao Z, Kumar V, Serra A, Tan J, Sze SK, Gao YG.
    Plant J; 2020 Apr 26; 102(1):153-164. PubMed ID: 31762135
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1).
    Ou X, Ji C, Han X, Zhao X, Li X, Mao Y, Wong LL, Bartlam M, Rao Z.
    J Mol Biol; 2006 Mar 31; 357(3):858-69. PubMed ID: 16460752
    [Abstract] [Full Text] [Related]

  • 10. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans.
    Fillinger S, Ruijter G, Tamás MJ, Visser J, Thevelein JM, d'Enfert C.
    Mol Microbiol; 2001 Jan 31; 39(1):145-57. PubMed ID: 11123696
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N, Nonaka T, Tanabe T, Yoshimoto T, Tsuru D, Mitsui Y.
    Biochemistry; 1996 Jun 18; 35(24):7715-30. PubMed ID: 8672472
    [Abstract] [Full Text] [Related]

  • 14. Isolation and characterization of adipose tissue glycerol-3-phosphate dehydrogenase.
    Koekemoer TC, Litthauer D, Oelofsen W.
    Int J Biochem Cell Biol; 1995 Jun 18; 27(6):625-32. PubMed ID: 7671141
    [Abstract] [Full Text] [Related]

  • 15. Kinetic study of sn-glycerol-1-phosphate dehydrogenase from the aerobic hyperthermophilic archaeon, Aeropyrum pernix K1.
    Han JS, Kosugi Y, Ishida H, Ishikawa K.
    Eur J Biochem; 2002 Feb 18; 269(3):969-76. PubMed ID: 11846799
    [Abstract] [Full Text] [Related]

  • 16. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site.
    Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG.
    Biochemistry; 1995 Nov 21; 34(46):14975-86. PubMed ID: 7578111
    [Abstract] [Full Text] [Related]

  • 17. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.
    Colussi T, Parsonage D, Boles W, Matsuoka T, Mallett TC, Karplus PA, Claiborne A.
    Biochemistry; 2008 Jan 22; 47(3):965-77. PubMed ID: 18154320
    [Abstract] [Full Text] [Related]

  • 18. Prediction of secondary structural elements in glycerol-3-phosphate dehydrogenase by comparison with other dehydrogenases.
    Otto J, Argos P, Rossmann MG.
    Eur J Biochem; 1980 Aug 22; 109(2):325-30. PubMed ID: 6773774
    [Abstract] [Full Text] [Related]

  • 19. Structural and functional analysis of the gpsA gene product of Archaeoglobus fulgidus: a glycerol-3-phosphate dehydrogenase with an unusual NADP+ preference.
    Sakasegawa S, Hagemeier CH, Thauer RK, Essen LO, Shima S.
    Protein Sci; 2004 Dec 22; 13(12):3161-71. PubMed ID: 15557260
    [Abstract] [Full Text] [Related]

  • 20. Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair.
    Reyes AC, Koudelka AP, Amyes TL, Richard JP.
    J Am Chem Soc; 2015 Apr 29; 137(16):5312-5. PubMed ID: 25884759
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.