These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 12769520

  • 1. Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis.
    Holtman KM, Chang HM, Jameel H, Kadla JF.
    J Agric Food Chem; 2003 Jun 04; 51(12):3535-40. PubMed ID: 12769520
    [Abstract] [Full Text] [Related]

  • 2. Determination of arylglycerol-beta-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL): comparison of DFRC/(31)P NMR with thioacidolysis.
    Guerra A, Norambuena M, Freer J, Argyropoulos DS.
    J Nat Prod; 2008 May 04; 71(5):836-41. PubMed ID: 18419155
    [Abstract] [Full Text] [Related]

  • 3. Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin.
    Holtman KM, Chang HM, Kadla JF.
    J Agric Food Chem; 2004 Feb 25; 52(4):720-6. PubMed ID: 14969522
    [Abstract] [Full Text] [Related]

  • 4. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.
    Capanema EA, Balakshin MY, Kadla JF.
    J Agric Food Chem; 2005 Dec 14; 53(25):9639-49. PubMed ID: 16332110
    [Abstract] [Full Text] [Related]

  • 5. Studies on the effect of ball milling on lignin structure using a modified DFRC method.
    Ikeda T, Holtman K, Kadla JF, Chang HM, Jameel H.
    J Agric Food Chem; 2002 Jan 02; 50(1):129-35. PubMed ID: 11754556
    [Abstract] [Full Text] [Related]

  • 6. Toward a better understanding of the lignin isolation process from wood.
    Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS.
    J Agric Food Chem; 2006 Aug 09; 54(16):5939-47. PubMed ID: 16881698
    [Abstract] [Full Text] [Related]

  • 7. Comparative evaluation of three lignin isolation protocols for various wood species.
    Guerra A, Filpponen I, Lucia LA, Argyropoulos DS.
    J Agric Food Chem; 2006 Dec 27; 54(26):9696-705. PubMed ID: 17177489
    [Abstract] [Full Text] [Related]

  • 8. Analysis of technical lignins by two- and three-dimensional NMR spectroscopy.
    Liitiä TM, Maunu SL, Hortling B, Toikka M, Kilpeläinen I.
    J Agric Food Chem; 2003 Apr 09; 51(8):2136-43. PubMed ID: 12670147
    [Abstract] [Full Text] [Related]

  • 9. Milled wood lignin: a linear oligomer.
    Crestini C, Melone F, Sette M, Saladino R.
    Biomacromolecules; 2011 Nov 14; 12(11):3928-35. PubMed ID: 21928799
    [Abstract] [Full Text] [Related]

  • 10. Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives.
    del Río JC, Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Martínez ÁT.
    J Agric Food Chem; 2011 Oct 26; 59(20):11088-99. PubMed ID: 21905657
    [Abstract] [Full Text] [Related]

  • 11. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique.
    Balakshin MY, Capanema EA, Chen CL, Gracz HS.
    J Agric Food Chem; 2003 Oct 08; 51(21):6116-27. PubMed ID: 14518932
    [Abstract] [Full Text] [Related]

  • 12. Lignin structural variation in hardwood species.
    Santos RB, Capanema EA, Balakshin MY, Chang HM, Jameel H.
    J Agric Food Chem; 2012 May 16; 60(19):4923-30. PubMed ID: 22533315
    [Abstract] [Full Text] [Related]

  • 13. Structural characterization of the lignin from jute (Corchorus capsularis) fibers.
    del Río JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jiménez-Barbero J, Martínez AT, Gutiérrez A.
    J Agric Food Chem; 2009 Nov 11; 57(21):10271-81. PubMed ID: 19817367
    [Abstract] [Full Text] [Related]

  • 14. Chemical synthesis of beta-O-4 type artificial lignin.
    Kishimoto T, Uraki Y, Ubukata M.
    Org Biomol Chem; 2006 Apr 07; 4(7):1343-7. PubMed ID: 16557323
    [Abstract] [Full Text] [Related]

  • 15. Structural characterization of lignin from triploid of Populus tomentosa Carr.
    Yuan TQ, Sun SN, Xu F, Sun RC.
    J Agric Food Chem; 2011 Jun 22; 59(12):6605-15. PubMed ID: 21568341
    [Abstract] [Full Text] [Related]

  • 16. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy.
    Capanema EA, Balakshin MY, Kadla JF.
    J Agric Food Chem; 2004 Apr 07; 52(7):1850-60. PubMed ID: 15053520
    [Abstract] [Full Text] [Related]

  • 17. Novel tetrahydrofuran structures derived from beta-beta-coupling reactions involving sinapyl acetate in Kenaf lignins.
    Lu F, Ralph J.
    Org Biomol Chem; 2008 Oct 21; 6(20):3681-94. PubMed ID: 18843398
    [Abstract] [Full Text] [Related]

  • 18. Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars.
    Moon SJ, Eom IY, Kim JY, Kim TS, Lee SM, Choi IG, Choi JW.
    Bioresour Technol; 2011 May 21; 102(10):5912-6. PubMed ID: 21435868
    [Abstract] [Full Text] [Related]

  • 19. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR, Mansfield SD.
    Plant J; 2009 May 21; 58(4):706-14. PubMed ID: 19175772
    [Abstract] [Full Text] [Related]

  • 20. Characterization of the Interunit Bonds of Lignin Oligomers Released by Acid-Catalyzed Selective Solvolysis of Cryptomeria japonica and Eucalyptus globulus Woods via Thioacidolysis and 2D-NMR.
    Saito K, Kaiho A, Sakai R, Nishimura H, Okada H, Watanabe T.
    J Agric Food Chem; 2016 Dec 07; 64(48):9152-9160. PubMed ID: 27806566
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.