These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 12769565

  • 1. Thermodynamic contributions of the ordered water molecule in HIV-1 protease.
    Li Z, Lazaridis T.
    J Am Chem Soc; 2003 Jun 04; 125(22):6636-7. PubMed ID: 12769565
    [Abstract] [Full Text] [Related]

  • 2. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z, Lazaridis T.
    J Phys Chem B; 2005 Jan 13; 109(1):662-70. PubMed ID: 16851059
    [Abstract] [Full Text] [Related]

  • 3. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y, Yang CY, Wang S.
    J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623
    [Abstract] [Full Text] [Related]

  • 4. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method.
    Hamelberg D, McCammon JA.
    J Am Chem Soc; 2004 Jun 23; 126(24):7683-9. PubMed ID: 15198616
    [Abstract] [Full Text] [Related]

  • 5. Classification of water molecules in protein binding sites.
    Barillari C, Taylor J, Viner R, Essex JW.
    J Am Chem Soc; 2007 Mar 07; 129(9):2577-87. PubMed ID: 17288418
    [Abstract] [Full Text] [Related]

  • 6. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S, Kang LW, Velazquez-Campoy A, Kiso Y, Amzel LM, Freire E.
    Proteins; 2004 May 15; 55(3):594-602. PubMed ID: 15103623
    [Abstract] [Full Text] [Related]

  • 7. Thermodynamics of buried water clusters at a protein-ligand binding interface.
    Li Z, Lazaridis T.
    J Phys Chem B; 2006 Jan 26; 110(3):1464-75. PubMed ID: 16471698
    [Abstract] [Full Text] [Related]

  • 8. Hydrogen bonds in membrane proteins.
    Sheu SY, Schlag EW, Selzle HL, Yang DY.
    J Phys Chem B; 2009 Apr 16; 113(15):5318-26. PubMed ID: 19354309
    [Abstract] [Full Text] [Related]

  • 9. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study.
    Holdgate GA, Tunnicliffe A, Ward WH, Weston SA, Rosenbrock G, Barth PT, Taylor IW, Pauptit RA, Timms D.
    Biochemistry; 1997 Aug 12; 36(32):9663-73. PubMed ID: 9245398
    [Abstract] [Full Text] [Related]

  • 10. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Abraham DJ, Kellogg GE.
    J Med Chem; 2004 Aug 26; 47(18):4507-16. PubMed ID: 15317462
    [Abstract] [Full Text] [Related]

  • 11. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A.
    J Mol Biol; 2006 Apr 21; 358(1):289-309. PubMed ID: 16497327
    [Abstract] [Full Text] [Related]

  • 12. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF, Di Lella S, Guardia CM, Estrin DA, Martí MA.
    J Phys Chem B; 2009 Jun 25; 113(25):8717-24. PubMed ID: 19485380
    [Abstract] [Full Text] [Related]

  • 13. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S.
    J Chem Inf Model; 2005 Jun 25; 45(2):300-8. PubMed ID: 15807491
    [Abstract] [Full Text] [Related]

  • 14. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I, Sadiq SK, Coveney PV.
    J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901
    [Abstract] [Full Text] [Related]

  • 15. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M, Kríz Z, Havlas Z.
    Proteins; 2004 Nov 01; 57(2):279-93. PubMed ID: 15340915
    [Abstract] [Full Text] [Related]

  • 16. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T, He GX, Liu X, Chen JM, Hatada M, Swaminathan S, McDermott MJ, Yang ZY, Mulato AS, Chen X, Leavitt SA, Stray KM, Lee WA.
    J Mol Biol; 2006 Oct 27; 363(3):635-47. PubMed ID: 16979654
    [Abstract] [Full Text] [Related]

  • 17. Heat capacity effects of water molecules and ions at a protein-DNA interface.
    Bergqvist S, Williams MA, O'Brien R, Ladbury JE.
    J Mol Biol; 2004 Feb 27; 336(4):829-42. PubMed ID: 15095863
    [Abstract] [Full Text] [Related]

  • 18. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G, Senapati S.
    Biochemistry; 2008 Oct 07; 47(40):10657-64. PubMed ID: 18785756
    [Abstract] [Full Text] [Related]

  • 19. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV.
    J Chem Inf Model; 2008 Sep 07; 48(9):1909-19. PubMed ID: 18710212
    [Abstract] [Full Text] [Related]

  • 20. Hydration energy landscape of the active site cavity in cytochrome P450cam.
    Helms V, Wade RC.
    Proteins; 1998 Aug 15; 32(3):381-96. PubMed ID: 9715913
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.