These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 12769745

  • 1. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments.
    Somsák L, Nagya V, Hadady Z, Docsa T, Gergely P.
    Curr Pharm Des; 2003; 9(15):1177-89. PubMed ID: 12769745
    [Abstract] [Full Text] [Related]

  • 2. Inhibition of glycogen phosphorylase in the context of type 2 diabetes, with focus on recent inhibitors bound at the active site.
    Praly JP, Vidal S.
    Mini Rev Med Chem; 2010 Oct; 10(12):1102-26. PubMed ID: 20716051
    [Abstract] [Full Text] [Related]

  • 3. Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition.
    Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly JP, Azay-Milhau J, Vidal S.
    Eur J Med Chem; 2016 Jan 27; 108():444-454. PubMed ID: 26708111
    [Abstract] [Full Text] [Related]

  • 4. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors.
    Kantsadi AL, Parmenopoulou V, Bakalov DN, Snelgrove L, Stravodimos GA, Chatzileontiadou DS, Manta S, Panagiotopoulou A, Hayes JM, Komiotis D, Leonidas DD.
    Curr Top Med Chem; 2015 Jan 27; 15(23):2373-89. PubMed ID: 26088352
    [Abstract] [Full Text] [Related]

  • 5. Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-glucopyranosyl urea binding.
    Alexacou KM, Hayes JM, Tiraidis C, Zographos SE, Leonidas DD, Chrysina ED, Archontis G, Oikonomakos NG, Paul JV, Varghese B, Loganathan D.
    Proteins; 2008 May 15; 71(3):1307-23. PubMed ID: 18041758
    [Abstract] [Full Text] [Related]

  • 6. Synthesis of N-glucopyranosidic derivatives as potential inhibitors that bind at the catalytic site of glycogen phosphorylase.
    Gimisis T.
    Mini Rev Med Chem; 2010 Oct 15; 10(12):1127-38. PubMed ID: 20716054
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of d-gluco- and d-xylopyranosylidene-spiro-(thio)hydantoins and N-(d-glucopyranosyl) amides.
    Somsák L, Kovács L, Tóth M, Osz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P.
    J Med Chem; 2001 Aug 16; 44(17):2843-8. PubMed ID: 11495595
    [Abstract] [Full Text] [Related]

  • 8. Glucose-based spiro-oxathiazoles as in vivo anti-hyperglycemic agents through glycogen phosphorylase inhibition.
    Goyard D, Kónya B, Czifrák K, Larini P, Demontrond F, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Docsa T, Gergely P, Somsák L, Praly JP, Azay-Milhau J, Vidal S.
    Org Biomol Chem; 2020 Feb 07; 18(5):931-940. PubMed ID: 31922157
    [Abstract] [Full Text] [Related]

  • 9. Kinetic and crystallographic studies of glucopyranose spirohydantoin and glucopyranosylamine analogs inhibitors of glycogen phosphorylase.
    Watson KA, Chrysina ED, Tsitsanou KE, Zographos SE, Archontis G, Fleet GW, Oikonomakos NG.
    Proteins; 2005 Dec 01; 61(4):966-83. PubMed ID: 16222658
    [Abstract] [Full Text] [Related]

  • 10. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy.
    Oikonomakos NG.
    Curr Protein Pept Sci; 2002 Dec 01; 3(6):561-86. PubMed ID: 12470212
    [Abstract] [Full Text] [Related]

  • 11. Novel design principle validated: glucopyranosylidene-spiro-oxathiazole as new nanomolar inhibitor of glycogen phosphorylase, potential antidiabetic agent.
    Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly JP.
    Bioorg Med Chem Lett; 2008 Oct 15; 18(20):5680-3. PubMed ID: 18793852
    [Abstract] [Full Text] [Related]

  • 12. Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site.
    Kristiansen M, Andersen B, Iversen LF, Westergaard N.
    J Med Chem; 2004 Jul 01; 47(14):3537-45. PubMed ID: 15214781
    [Abstract] [Full Text] [Related]

  • 13. Glycogen phosphorylase inhibitors: a patent review (2013 - 2015).
    Donnier-Maréchal M, Vidal S.
    Expert Opin Ther Pat; 2016 Jul 01; 26(2):199-212. PubMed ID: 26666989
    [Abstract] [Full Text] [Related]

  • 14. In the Search of Glycoside-Based Molecules as Antidiabetic Agents.
    Pałasz A, Cież D, Trzewik B, Miszczak K, Tynor G, Bazan B.
    Top Curr Chem (Cham); 2019 Jun 05; 377(4):19. PubMed ID: 31165274
    [Abstract] [Full Text] [Related]

  • 15. Binding of N-acetyl-N '-beta-D-glucopyranosyl urea and N-benzoyl-N '-beta-D-glucopyranosyl urea to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG, Kosmopoulou M, Zographos SE, Leonidas DD, Chrysina ED, Somsák L, Nagy V, Praly JP, Docsa T, Tóth B, Gergely P.
    Eur J Biochem; 2002 Mar 05; 269(6):1684-96. PubMed ID: 11895439
    [Abstract] [Full Text] [Related]

  • 16. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors.
    Kun S, Begum J, Kyriakis E, Stamati ECV, Barkas TA, Szennyes E, Bokor É, Szabó KE, Stravodimos GA, Sipos Á, Docsa T, Gergely P, Moffatt C, Patraskaki MS, Kokolaki MC, Gkerdi A, Skamnaki VT, Leonidas DD, Somsák L, Hayes JM.
    Eur J Med Chem; 2018 Mar 10; 147():266-278. PubMed ID: 29453094
    [Abstract] [Full Text] [Related]

  • 17. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors.
    Andersen B, Westergaard N.
    Biochem J; 2002 Oct 15; 367(Pt 2):443-50. PubMed ID: 12099891
    [Abstract] [Full Text] [Related]

  • 18. 3'-axial CH2 OH substitution on glucopyranose does not increase glycogen phosphorylase inhibitory potency. QM/MM-PBSA calculations suggest why.
    Manta S, Xipnitou A, Kiritsis C, Kantsadi AL, Hayes JM, Skamnaki VT, Lamprakis C, Kontou M, Zoumpoulakis P, Zographos SE, Leonidas DD, Komiotis D.
    Chem Biol Drug Des; 2012 May 15; 79(5):663-73. PubMed ID: 22296957
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, In Silico and Kinetics Evaluation of N-(β-d-glucopyranosyl)-2-arylimidazole-4(5)-carboxamides and N-(β-d-glucopyranosyl)-4(5)-arylimidazole-2-carboxamides as Glycogen Phosphorylase Inhibitors.
    Homolya L, Mathomes RT, Varga L, Docsa T, Juhász L, Hayes JM, Somsák L.
    Int J Mol Sci; 2024 Apr 23; 25(9):. PubMed ID: 38731811
    [Abstract] [Full Text] [Related]

  • 20. The design of potential antidiabetic drugs: experimental investigation of a number of beta-D-glucose analogue inhibitors of glycogen phosphorylase.
    Oikonomakos NG, Kontou M, Zographos SE, Tsitoura HS, Johnson LN, Watson KA, Mitchell EP, Fleet GW, Son JC, Bichard CJ.
    Eur J Drug Metab Pharmacokinet; 1994 Apr 23; 19(3):185-92. PubMed ID: 7867660
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.