These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF, de S Pinto SE, Viana RL, Lopes SR, Grebogi C. Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [Abstract] [Full Text] [Related]
4. Unstable periodic orbits and noise in chaos computing. Kia B, Dari A, Ditto WL, Spano ML. Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [Abstract] [Full Text] [Related]
10. Cycles homoclinic to chaotic sets; robustness and resonance. Ashwin P. Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649 [Abstract] [Full Text] [Related]
11. Control of noisy chaotic motion in a system with nonlinear excitation and restoring forces. King PE, Yim SC. Chaos; 1997 Jun; 7(2):290-300. PubMed ID: 12779657 [Abstract] [Full Text] [Related]
15. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC, Liu Z, Billings L, Schwartz IB. Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [Abstract] [Full Text] [Related]
16. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y, Yamada M. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [Abstract] [Full Text] [Related]
17. Phase resetting effects for robust cycles between chaotic sets. Ashwin P, Field M, Rucklidge AM, Sturman R. Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [Abstract] [Full Text] [Related]