These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 12785506

  • 1. Assessing TMDL effectiveness using flow-adjusted concentrations: a case study of the Neuse River, North Carolina.
    Stow CA, Borsuk ME.
    Environ Sci Technol; 2003 May 15; 37(10):2043-50. PubMed ID: 12785506
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of progress in achieving TMDL mandated nitrogen reductions in the Neuse River basin, North Carolina.
    Lebo ME, Paerl HW, Peierls BL.
    Environ Manage; 2012 Jan 15; 49(1):253-66. PubMed ID: 22037617
    [Abstract] [Full Text] [Related]

  • 3. Assessing the effects of nutrient management in an estuary experiencing climatic change: the Neuse River Estuary, North Carolina.
    Paerl HW, Valdes LM, Piehler MF, Stow CA.
    Environ Manage; 2006 Mar 15; 37(3):422-36. PubMed ID: 16456630
    [Abstract] [Full Text] [Related]

  • 4. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin.
    Alameddine I, Qian SS, Reckhow KH.
    Water Res; 2011 Jan 15; 45(1):51-62. PubMed ID: 20800259
    [Abstract] [Full Text] [Related]

  • 5. Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina.
    Stow CA, Borsuk ME, Stanley DW.
    Water Res; 2001 Apr 15; 35(6):1489-99. PubMed ID: 11317896
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Nutrient response modeling in Falls of the Neuse Reservoir.
    Lin J, Li J.
    Environ Manage; 2011 Mar 15; 47(3):398-409. PubMed ID: 21308376
    [Abstract] [Full Text] [Related]

  • 11. [Bivariate statistical model for calculating phosphorus input loads to the river from point and nonpoint sources].
    Chen DJ, Sun SY, Jia YN, Chen JB, Lü J.
    Huan Jing Ke Xue; 2013 Jan 15; 34(1):84-90. PubMed ID: 23487922
    [Abstract] [Full Text] [Related]

  • 12. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction.
    Wang M, Strokal M, Burek P, Kroeze C, Ma L, Janssen ABG.
    Sci Total Environ; 2019 May 10; 664():865-873. PubMed ID: 30769310
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M, Kroeze C, Wang M, Bai Z, Ma L.
    Sci Total Environ; 2016 Aug 15; 562():869-888. PubMed ID: 27115624
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.