These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 12787337

  • 1. The role of the cytoskeleton in capacitative calcium entry in myenteric glia.
    Lin T, Zhang W, Garrido R, Segura B, Hu Y, Guzman E, Mulholland M.
    Neurogastroenterol Motil; 2003 Jun; 15(3):277-87. PubMed ID: 12787337
    [Abstract] [Full Text] [Related]

  • 2. Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry.
    Ribeiro CM, Reece J, Putney JW.
    J Biol Chem; 1997 Oct 17; 272(42):26555-61. PubMed ID: 9334235
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells.
    Xie Q, Zhang Y, Zhai C, Bonanno JA.
    J Biol Chem; 2002 May 10; 277(19):16559-66. PubMed ID: 11867616
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Endothelin-stimulated capacitative calcium entry in enteric glial cells: synergistic effects of protein kinase C activity and nitric oxide.
    Zhang W, Sarosi GA, Barnhart DC, Mulholland MW.
    J Neurochem; 1998 Jul 10; 71(1):205-12. PubMed ID: 9648867
    [Abstract] [Full Text] [Related]

  • 7. Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells.
    Morales S, Camello PJ, Rosado JA, Mawe GM, Pozo MJ.
    Cell Signal; 2005 May 10; 17(5):635-45. PubMed ID: 15683738
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Intercellular calcium waves in cultured enteric glia from neonatal guinea pig.
    Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW.
    Glia; 2003 May 10; 42(3):252-62. PubMed ID: 12673831
    [Abstract] [Full Text] [Related]

  • 12. Disruption of filamentous actin diminishes hormonally evoked Ca2+ responses in rat liver.
    Yamamoto NS, Merkle CJ, Kraus-Friedmann N.
    Metabolism; 1999 Oct 10; 48(10):1241-7. PubMed ID: 10535385
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly.
    Tzanakakis ES, Hansen LK, Hu WS.
    Cell Motil Cytoskeleton; 2001 Mar 10; 48(3):175-89. PubMed ID: 11223949
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.