These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
252 related items for PubMed ID: 12787678
1. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. Heerklotz H, Szadkowska H, Anderson T, Seelig J. J Mol Biol; 2003 Jun 13; 329(4):793-9. PubMed ID: 12787678 [Abstract] [Full Text] [Related]
2. Triton promotes domain formation in lipid raft mixtures. Heerklotz H. Biophys J; 2002 Nov 13; 83(5):2693-701. PubMed ID: 12414701 [Abstract] [Full Text] [Related]
3. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P, London E. Biophys J; 2011 Nov 16; 101(10):2417-25. PubMed ID: 22098740 [Abstract] [Full Text] [Related]
4. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ. Biophys J; 2002 Mar 16; 82(3):1469-82. PubMed ID: 11867462 [Abstract] [Full Text] [Related]
5. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. McIntosh TJ, Vidal A, Simon SA. Biophys J; 2003 Sep 16; 85(3):1656-66. PubMed ID: 12944280 [Abstract] [Full Text] [Related]
6. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J, Bagatolli LA, Goñi FM, Alonso A. Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266 [Abstract] [Full Text] [Related]
7. Visualizing detergent resistant domains in model membranes with atomic force microscopy. Rinia HA, Snel MM, van der Eerden JP, de Kruijff B. FEBS Lett; 2001 Jul 13; 501(1):92-6. PubMed ID: 11457463 [Abstract] [Full Text] [Related]
8. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization. Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA. Langmuir; 2017 Jul 25; 33(29):7312-7321. PubMed ID: 28474888 [Abstract] [Full Text] [Related]
9. Nonideal mixing in multicomponent lipid/detergent systems. Tsamaloukas A, Szadkowska H, Heerklotz H. J Phys Condens Matter; 2006 Jul 19; 18(28):S1125-38. PubMed ID: 21690833 [Abstract] [Full Text] [Related]
10. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Shaikh SR, Dumaual AC, Castillo A, LoCascio D, Siddiqui RA, Stillwell W, Wassall SR. Biophys J; 2004 Sep 19; 87(3):1752-66. PubMed ID: 15345554 [Abstract] [Full Text] [Related]
11. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Biochim Biophys Acta Biomembr; 2018 Oct 19; 1860(10):1985-1993. PubMed ID: 29730243 [Abstract] [Full Text] [Related]
12. Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles: a direct microscopy observation. Staneva G, Seigneuret M, Koumanov K, Trugnan G, Angelova MI. Chem Phys Lipids; 2005 Jul 19; 136(1):55-66. PubMed ID: 15927174 [Abstract] [Full Text] [Related]
13. Effect of a 2-hydroxylated fatty acid on cholesterol-rich membrane domains. Prades J, Funari SS, Gomez-Florit M, Vögler O, Barceló F. Mol Membr Biol; 2012 Dec 19; 29(8):333-43. PubMed ID: 22830943 [Abstract] [Full Text] [Related]
14. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE, Smith DA, Hooper NM. Mol Membr Biol; 2007 Dec 19; 24(3):233-42. PubMed ID: 17520480 [Abstract] [Full Text] [Related]
15. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Geisse NA, Cover TL, Henderson RM, Edwardson JM. Biochem J; 2004 Aug 01; 381(Pt 3):911-7. PubMed ID: 15128269 [Abstract] [Full Text] [Related]
16. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content. Abi-Rizk G, Besson F. Colloids Surf B Biointerfaces; 2008 Oct 15; 66(2):163-7. PubMed ID: 18644701 [Abstract] [Full Text] [Related]
17. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Biophys J; 2018 Oct 16; 115(8):1530-1540. PubMed ID: 30274830 [Abstract] [Full Text] [Related]
18. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation? Shaikh SR, Brzustowicz MR, Gustafson N, Stillwell W, Wassall SR. Biochemistry; 2002 Aug 27; 41(34):10593-602. PubMed ID: 12186543 [Abstract] [Full Text] [Related]
19. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. Arnulphi C, Sot J, García-Pacios M, Arrondo JL, Alonso A, Goñi FM. Biophys J; 2007 Nov 15; 93(10):3504-14. PubMed ID: 17675347 [Abstract] [Full Text] [Related]
20. Lipid rafts reconstituted in model membranes. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Biophys J; 2001 Mar 15; 80(3):1417-28. PubMed ID: 11222302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]