These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 12797724

  • 21. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S, Nuyujukian PH, Pesterev A, Mody I, Judy JW.
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [Abstract] [Full Text] [Related]

  • 22. Integrated wireless neural interface based on the Utah electrode array.
    Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F.
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [Abstract] [Full Text] [Related]

  • 23. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [Abstract] [Full Text] [Related]

  • 24. Micro-multi-probe electrode array to measure neural signals.
    Chen CH, Yao DJ, Tseng SH, Lu SW, Chiao CC, Yeh SR.
    Biosens Bioelectron; 2009 Mar 15; 24(7):1911-7. PubMed ID: 19027284
    [Abstract] [Full Text] [Related]

  • 25. Analog frontend for multichannel neuronal recording system with spike and LFP separation.
    Perelman Y, Ginosar R.
    J Neurosci Methods; 2006 May 15; 153(1):21-6. PubMed ID: 16337276
    [Abstract] [Full Text] [Related]

  • 26. Single-chip microelectronic system to interface with living cells.
    Heer F, Hafizovic S, Ugniwenko T, Frey U, Franks W, Perriard E, Perriard JC, Blau A, Ziegler C, Hierlemann A.
    Biosens Bioelectron; 2007 May 15; 22(11):2546-53. PubMed ID: 17097869
    [Abstract] [Full Text] [Related]

  • 27. Influence of system integration and packaging on its inductive power link for an integrated wireless neural interface.
    Kim S, Harrison RR, Solzbacher F.
    IEEE Trans Biomed Eng; 2009 Dec 15; 56(12):2927-36. PubMed ID: 19695994
    [Abstract] [Full Text] [Related]

  • 28. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS, Kemere C, O'Driscoll S, Santhanam G, Ahmed RE, Shenoy KV, Meng TH.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep 15; 13(3):272-9. PubMed ID: 16200751
    [Abstract] [Full Text] [Related]

  • 29. Wireless technologies for closed-loop retinal prostheses.
    Ng DC, Bai S, Yang J, Tran N, Skafidas E.
    J Neural Eng; 2009 Dec 15; 6(6):065004. PubMed ID: 19850974
    [Abstract] [Full Text] [Related]

  • 30. A power efficient electronic implant for a visual cortical neuroprosthesis.
    Coulombe J, Carniguian S, Sawan M.
    Artif Organs; 2005 Mar 15; 29(3):233-8. PubMed ID: 15725224
    [Abstract] [Full Text] [Related]

  • 31. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA, Martel SM, Hatsopoulos NG, Donoghue JP, Hunter IW.
    IEEE Trans Biomed Eng; 2004 Jun 15; 51(6):890-5. PubMed ID: 15188855
    [Abstract] [Full Text] [Related]

  • 32. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing JP, Joucla S, Trevisiol M, Bourgerette A, Chauvet P, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B.
    Biosens Bioelectron; 2010 Apr 15; 25(8):1889-96. PubMed ID: 20106652
    [Abstract] [Full Text] [Related]

  • 33. A MEMS fabricated flexible electrode array for recording surface field potentials.
    Hollenberg BA, Richards CD, Richards R, Bahr DF, Rector DM.
    J Neurosci Methods; 2006 May 15; 153(1):147-53. PubMed ID: 16352343
    [Abstract] [Full Text] [Related]

  • 34. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM, Eggers T, McCallum G, Durand DM.
    J Neural Eng; 2015 Aug 15; 12(4):046024. PubMed ID: 26083774
    [Abstract] [Full Text] [Related]

  • 35. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays.
    Dabrowski W, Grybos P, Litke AM.
    Biosens Bioelectron; 2004 Feb 15; 19(7):749-61. PubMed ID: 14709394
    [Abstract] [Full Text] [Related]

  • 36. A system-on-chip digital pH meter for use in a wireless diagnostic capsule.
    Hammond PA, Ali D, Cumming DR.
    IEEE Trans Biomed Eng; 2005 Apr 15; 52(4):687-94. PubMed ID: 15825870
    [Abstract] [Full Text] [Related]

  • 37. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR, Vetter RJ, Williams JC, Hetke JF.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun 15; 11(2):151-5. PubMed ID: 12899260
    [Abstract] [Full Text] [Related]

  • 38. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG, Folkers A, Mösch F, Malina T, Menne KM, Biella G, Fagerstedt P, De Schutter E, Jensen W, Yoshida K, Hoehl D, Thomas U, Kindlundh MG, Norlin P, de Curtis M.
    IEEE Trans Biomed Eng; 2006 Aug 15; 53(8):1672-7. PubMed ID: 16916102
    [Abstract] [Full Text] [Related]

  • 39. A 1.48-mW low-phase-noise analog frequency modulator for wireless biotelemetry.
    Mohseni P, Najafi K.
    IEEE Trans Biomed Eng; 2005 May 15; 52(5):938-43. PubMed ID: 15887544
    [Abstract] [Full Text] [Related]

  • 40. Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
    Mohseni P, Najafi K, Eliades SJ, Wang X.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep 15; 13(3):263-71. PubMed ID: 16200750
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.