These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 1280554

  • 1. Cell cycle analysis of asynchronous cell populations by flow cytometry using bromodeoxyuridine label and Hoechst-propidium iodide stain.
    Ormerod MG, Kubbies M.
    Cytometry; 1992; 13(7):678-85. PubMed ID: 1280554
    [Abstract] [Full Text] [Related]

  • 2. Cell-cycle analysis of asynchronous populations.
    Ormerod MG.
    Methods Mol Biol; 2004; 263():345-54. PubMed ID: 14976376
    [Abstract] [Full Text] [Related]

  • 3. Improved BrdUrd-Hoechst bivariate cell kinetic analysis by helium-cadmium single laser excitation.
    Kubbies M, Goller B, Van Bockstaele DR.
    Cytometry; 1992; 13(7):782-6. PubMed ID: 1280556
    [Abstract] [Full Text] [Related]

  • 4. Continuous bromodeoxyuridine labeling and bivariate ethidium bromide/Hoechst flow cytometry in cell kinetics.
    Poot M, Schmitt H, Seyschab H, Koehler J, Chen U, Kaempf U, Kubbies M, Schindler D, Rabinovitch PS, Hoehn H.
    Cytometry; 1989 Mar; 10(2):222-6. PubMed ID: 2469558
    [Abstract] [Full Text] [Related]

  • 5. Cell cycle analysis by combining the 5-bromodeoxyuridine/33258 Hoechst technique with DNA-specific ethidium bromide staining.
    Böhmer RM, Ellwart J.
    Cytometry; 1981 Jul; 2(1):31-4. PubMed ID: 6168457
    [Abstract] [Full Text] [Related]

  • 6. Flow cytometric measurement of cell cycle kinetics in rat Walker-256 carcinoma following in vivo and in vitro pulse labelling with bromodeoxyuridine.
    Fogt F, Wan J, O'Hara C, Bistrian BR, Blackburn GL, Istfan NW.
    Cytometry; 1991 Jul; 12(1):33-41. PubMed ID: 1825629
    [Abstract] [Full Text] [Related]

  • 7. Differentiation of mitotic melanoma cells from G2 cells and their isolation by use of 5-bromo-2'-deoxyuridine and propidium iodide.
    Trinkle LS, Swope VB, Abdel-Malek ZA, Nordlund JJ.
    Cytometry; 1988 Sep; 9(5):432-5. PubMed ID: 3180943
    [Abstract] [Full Text] [Related]

  • 8. Flow cytometric estimation of cell cycle parameters using a monoclonal antibody to bromodeoxyuridine.
    Sasaki K, Murakami T, Ogino T, Takahashi M, Kawasaki S.
    Cytometry; 1986 Jul; 7(4):391-5. PubMed ID: 3089742
    [Abstract] [Full Text] [Related]

  • 9. Analysis of cell cycle-related Ki-67 and p120 expression by flow cytometric BrdUrd-Hoechst/7AAD and immunolabeling technique.
    Endl E, Steinbach P, Knüchel R, Hofstädter F.
    Cytometry; 1997 Nov 01; 29(3):233-41. PubMed ID: 9389440
    [Abstract] [Full Text] [Related]

  • 10. A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample.
    Eidukevicius R, Characiejus D, Janavicius R, Kazlauskaite N, Pasukoniene V, Mauricas M, Den Otter W.
    BMC Cancer; 2005 Sep 22; 5():122. PubMed ID: 16176590
    [Abstract] [Full Text] [Related]

  • 11. Macrophage-induced cytostasis: kinetic analysis of bromodeoxyuridine-pulsed cells.
    Stevenson AP, Crissman HA, Stewart CC.
    Cytometry; 1985 Nov 22; 6(6):578-83. PubMed ID: 4064839
    [Abstract] [Full Text] [Related]

  • 12. Induction of cell cycle perturbations by the tear gas 2-chlorobenzylidene malonitrile in synchronously and asynchronously proliferating mammalian cells.
    Weller EM, Kubbies M, Nüsse M.
    Cytometry; 1995 Apr 01; 19(4):334-42. PubMed ID: 7796698
    [Abstract] [Full Text] [Related]

  • 13. Flow cytometry-based cell cycle measurement of mouse hematopoietic stem and progenitor cells.
    Shen H, Boyer M, Cheng T.
    Methods Mol Biol; 2008 Apr 01; 430():77-86. PubMed ID: 18370292
    [Abstract] [Full Text] [Related]

  • 14. A method to measure the duration of DNA synthesis and the potential doubling time from a single sample.
    Begg AC, McNally NJ, Shrieve DC, Kärcher H.
    Cytometry; 1985 Nov 01; 6(6):620-6. PubMed ID: 4064842
    [Abstract] [Full Text] [Related]

  • 15. Cell kinetic analysis of mixed populations using three-color fluorescence flow cytometry.
    Begg AC, Hofland I.
    Cytometry; 1991 Nov 01; 12(5):445-54. PubMed ID: 1718673
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of four methods of DNA distribution data analysis based on bromodeoxyuridine/DNA bivariate data.
    Lacombe F, Belloc F, Bernard P, Boisseau MR.
    Cytometry; 1988 May 01; 9(3):245-53. PubMed ID: 3378459
    [Abstract] [Full Text] [Related]

  • 17. Heterogeneity of bromodeoxyuridine sensitivity of cultured cells from melanoma metastases.
    Poot M, Hiller KH, Heimpel S, Schuster A, Köhler J, Hoehn H.
    Cytometry; 1995 Sep 01; 21(1):62-7. PubMed ID: 8529473
    [Abstract] [Full Text] [Related]

  • 18. Detection of bromodeoxyuridine incorporation by alteration of the fluorescence emission from nucleic acid binding dyes using only an argon ion laser.
    Frey T.
    Cytometry; 1994 Dec 01; 17(4):310-8. PubMed ID: 7875038
    [Abstract] [Full Text] [Related]

  • 19. Measurement of DNA synthesis by flow cytometry.
    Noguchi PD, Johnson JB, Browne W.
    Cytometry; 1981 May 01; 1(6):390-3. PubMed ID: 6168455
    [Abstract] [Full Text] [Related]

  • 20. Flow cytometric detection of mitotic cells using the bromodeoxyuridine/DNA technique in combination with 90 degrees and forward scatter measurements.
    Nüsse M, Jülch M, Geido E, Bruno S, Di Vinci A, Giaretti W, Ruoss K.
    Cytometry; 1989 May 01; 10(3):312-9. PubMed ID: 2496957
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.