These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 12811425
21. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Stams AJ, Plugge CM, de Bok FA, van Houten BH, Lens P, Dijkman H, Weijma J. Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442 [Abstract] [Full Text] [Related]
22. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. Yu S, Semprini L. J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006 [Abstract] [Full Text] [Related]
23. Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose. Lee IS, Bae JH, Yang Y, McCarty PL. J Contam Hydrol; 2004 Oct 15; 74(1-4):313-31. PubMed ID: 15358499 [Abstract] [Full Text] [Related]
24. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. Kotsyurbenko OR. FEMS Microbiol Ecol; 2005 Jun 01; 53(1):3-13. PubMed ID: 16329924 [Abstract] [Full Text] [Related]
25. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH. Environ Microbiol; 2008 Jan 01; 10(1):162-73. PubMed ID: 17903217 [Abstract] [Full Text] [Related]
26. pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I. Sci Total Environ; 2009 Aug 01; 407(16):4560-73. PubMed ID: 19464727 [Abstract] [Full Text] [Related]
27. The role of syntrophic associations in sustaining anaerobic mineralization of chlorinated organic compounds. Becker JG, Berardesco G, Rittmann BE, Stahl DA. Environ Health Perspect; 2005 Mar 01; 113(3):310-6. PubMed ID: 15743720 [Abstract] [Full Text] [Related]
28. Reductive decolourisation of azo dyes by mesophilic and thermophilic methanogenic consortia. Cervantes FJ, dos Santos AB, de Madrid MP, Stams AJ, van Lier JB. Water Sci Technol; 2005 Mar 01; 52(1-2):351-6. PubMed ID: 16180449 [Abstract] [Full Text] [Related]
29. Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Rosenthal H, Adrian L, Steiof M. Chemosphere; 2004 May 01; 55(5):661-9. PubMed ID: 15013671 [Abstract] [Full Text] [Related]
30. New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Lee MD, Odom JM, Buchanan RJ. Annu Rev Microbiol; 1998 May 01; 52():423-52. PubMed ID: 9891804 [Abstract] [Full Text] [Related]
31. Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G. Arch Microbiol; 2002 May 01; 177(5):420-6. PubMed ID: 11976751 [Abstract] [Full Text] [Related]
32. Anaerobic biodegradability of Tween surfactants used as a carbon source for the microbial reductive dechlorination of hexachlorobenzene. Yeh DH, Pavlostathis SG. Water Sci Technol; 2005 May 01; 52(1-2):343-9. PubMed ID: 16180448 [Abstract] [Full Text] [Related]
33. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Kao CM, Chen YL, Chen SC, Yeh TY, Wu WS. Water Res; 2003 Dec 01; 37(20):4885-94. PubMed ID: 14604634 [Abstract] [Full Text] [Related]
34. Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study. Boopathy R. Bioresour Technol; 2004 Sep 01; 94(2):143-51. PubMed ID: 15158506 [Abstract] [Full Text] [Related]
35. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture. Azizian MF, Behrens S, Sabalowsky A, Dolan ME, Spormann AM, Semprini L. J Contam Hydrol; 2008 Aug 20; 100(1-2):11-21. PubMed ID: 18550206 [Abstract] [Full Text] [Related]
36. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
37. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. Environ Microbiol; 2007 Jan 20; 9(1):187-96. PubMed ID: 17227423 [Abstract] [Full Text] [Related]
38. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. Chen YD, Barker JF, Gui L. J Contam Hydrol; 2008 Feb 19; 96(1-4):17-31. PubMed ID: 17964687 [Abstract] [Full Text] [Related]
39. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 19; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related]
40. Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Guiot SR, Cimpoia R, Kuhn R, Alaplantive A. Environ Sci Technol; 2008 Apr 15; 42(8):3011-7. PubMed ID: 18497159 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]