These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 1282168

  • 1. Molecular mechanism of action of nicorandil.
    Kukovetz WR, Holzmann S, Pöch G.
    J Cardiovasc Pharmacol; 1992; 20 Suppl 3():S1-7. PubMed ID: 1282168
    [Abstract] [Full Text] [Related]

  • 2. Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil.
    Holzmann S, Kukovetz WR, Braida C, Pöch G.
    Eur J Pharmacol; 1992 Apr 29; 215(1):1-7. PubMed ID: 1325362
    [Abstract] [Full Text] [Related]

  • 3. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T, Angus JA.
    Br J Pharmacol; 1996 Dec 29; 119(8):1549-56. PubMed ID: 8982500
    [Abstract] [Full Text] [Related]

  • 4. Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries.
    Satoh K, Yamada H, Taira N.
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan 29; 343(1):76-82. PubMed ID: 1827660
    [Abstract] [Full Text] [Related]

  • 5. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization.
    Kukovetz WR, Holzmann S, Braida C, Pöch G.
    J Cardiovasc Pharmacol; 1991 Apr 29; 17(4):627-33. PubMed ID: 1711631
    [Abstract] [Full Text] [Related]

  • 6. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T, Teshigawara T, Taira N.
    Br J Pharmacol; 1990 Sep 29; 101(1):157-65. PubMed ID: 2149290
    [Abstract] [Full Text] [Related]

  • 7. Heterogeneity in the vasorelaxing effect of nicorandil on dog epicardial coronary arteries: comparison with other NO donors.
    Matsumoto T, Takahashi M, Omura T, Takaoka A, Liu Q, Nakae I, Kinoshita M.
    J Cardiovasc Pharmacol; 1997 Jun 29; 29(6):772-9. PubMed ID: 9234658
    [Abstract] [Full Text] [Related]

  • 8. Cyclic GMP in nicorandil-induced vasodilatation and tolerance development.
    Kukovetz WR, Holzmann S.
    J Cardiovasc Pharmacol; 1987 Jun 29; 10 Suppl 8():S25-30. PubMed ID: 2447421
    [Abstract] [Full Text] [Related]

  • 9. Pharmacological characterization of nicorandil by 86Rb efflux and isometric vasorelaxation studies in vascular smooth muscle.
    Kreye VA, Lenz T, Pfründer D, Theiss U.
    J Cardiovasc Pharmacol; 1992 Jun 29; 20 Suppl 3():S8-12. PubMed ID: 1282181
    [Abstract] [Full Text] [Related]

  • 10. Nicorandil as a nitrate, and cromakalim as a potassium channel opener, dilate isolated porcine large coronary arteries in an agonist-nonselective manner.
    Satoh K, Mori T, Yamada H, Taira N.
    Cardiovasc Drugs Ther; 1993 Aug 29; 7(4):691-9. PubMed ID: 8241013
    [Abstract] [Full Text] [Related]

  • 11. Vasorelaxant mechanism of KRN2391 and nicorandil in porcine coronary arteries of different sizes.
    Miwa A, Kaneta S, Motoki K, Jinno Y, Kasai H, Okada Y, Fukushima H, Ogawa N.
    Br J Pharmacol; 1993 Jul 29; 109(3):632-6. PubMed ID: 8358563
    [Abstract] [Full Text] [Related]

  • 12. Cyclic GMP as possible mediator of coronary arterial relaxation by nicorandil (SG-75).
    Holzmann S.
    J Cardiovasc Pharmacol; 1983 Jul 29; 5(3):364-70. PubMed ID: 6191133
    [Abstract] [Full Text] [Related]

  • 13. K+ channel-opening action contributes to the preventive effects of nicorandil on U46619-induced vasoconstriction of canine large coronary arteries in vivo.
    Kamijo T, Iwai T, Haruta K, Takeda K.
    Arch Int Pharmacodyn Ther; 1996 Jul 29; 331(3):273-84. PubMed ID: 9124999
    [Abstract] [Full Text] [Related]

  • 14. Nicorandil increases coronary blood flow predominantly by K-channel opening mechanism.
    Yoneyama F, Satoh K, Taira N.
    Cardiovasc Drugs Ther; 1990 Aug 29; 4(4):1119-26. PubMed ID: 2150593
    [Abstract] [Full Text] [Related]

  • 15. Effects of nicorandil on cytosolic calcium concentrations and on tension development in the rabbit femoral artery.
    Abe S, Nishimura J, Nakamura M, Kanaide H.
    J Pharmacol Exp Ther; 1994 Feb 29; 268(2):762-71. PubMed ID: 8113988
    [Abstract] [Full Text] [Related]

  • 16. Spasmolytic action of nicorandil in canine conductive coronary arteries in vivo is not modified by glibenclamide.
    Imagawa J, Akima M, Nabata H, Taira N.
    J Cardiovasc Pharmacol; 1992 Jan 29; 19(1):108-14. PubMed ID: 1375676
    [Abstract] [Full Text] [Related]

  • 17. The negative inotropic effect of nicorandil is independent of cyclic GMP changes: a comparison with pinacidil and cromakalim in canine atrial muscle.
    Yanagisawa T, Hashimoto H, Taira N.
    Br J Pharmacol; 1988 Oct 29; 95(2):393-8. PubMed ID: 2852521
    [Abstract] [Full Text] [Related]

  • 18. K+ channel opening mediates the vasorelaxant effects of nicorandil in the intact vascular system.
    Cavero I, Pratz J, Mondot S.
    Z Kardiol; 1991 Oct 29; 80 Suppl 7():35-41. PubMed ID: 1838848
    [Abstract] [Full Text] [Related]

  • 19. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments.
    Ishiyama T, Dohi S, Iida H, Akamatsu S, Ohta S, Shimonaka H.
    Stroke; 1994 Aug 29; 25(8):1644-50. PubMed ID: 8042218
    [Abstract] [Full Text] [Related]

  • 20. Analysis of cromakalim-, pinacidil-, and nicorandil-induced relaxation of the 5-hydroxytryptamine precontracted rat isolated basilar artery.
    Ksoll E, Parsons AA, Mackert JR, Schilling L, Wahl M.
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Apr 29; 343(4):377-83. PubMed ID: 1830131
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.