These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


370 related items for PubMed ID: 12828365

  • 1. Ticks and tick-borne diseases in Africa: a disease transmission model.
    Mwambi HG.
    IMA J Math Appl Med Biol; 2002 Dec; 19(4):275-92. PubMed ID: 12828365
    [Abstract] [Full Text] [Related]

  • 2. Spread of parasites transported with their hosts: case study of two species of cattle tick.
    Barré N, Uilenberg G.
    Rev Sci Tech; 2010 Apr; 29(1):149-60, 135-47. PubMed ID: 20617654
    [Abstract] [Full Text] [Related]

  • 3. Effects of tick population dynamics and host densities on the persistence of tick-borne infections.
    Rosà R, Pugliese A.
    Math Biosci; 2007 Jul; 208(1):216-40. PubMed ID: 17125804
    [Abstract] [Full Text] [Related]

  • 4. Ticks and tick-borne disease in Guatemalan cattle and horses.
    Teglas M, Matern E, Lein S, Foley P, Mahan SM, Foley J.
    Vet Parasitol; 2005 Jul 15; 131(1-2):119-27. PubMed ID: 15936147
    [Abstract] [Full Text] [Related]

  • 5. Climate change and the epidemiology of tick-borne diseases of cattle in Africa.
    Kivaria FM.
    Vet J; 2010 Apr 15; 184(1):7-8. PubMed ID: 20045359
    [No Abstract] [Full Text] [Related]

  • 6. Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition.
    Norman R, Bowers RG, Begon M, Hudson PJ.
    J Theor Biol; 1999 Sep 07; 200(1):111-8. PubMed ID: 10479543
    [Abstract] [Full Text] [Related]

  • 7. Modelling bovine babesiosis: a tool to simulate scenarios for pathogen spread and to test control measures for the disease.
    Hoch T, Goebel J, Agoulon A, Malandrin L.
    Prev Vet Med; 2012 Sep 15; 106(2):136-42. PubMed ID: 22341037
    [Abstract] [Full Text] [Related]

  • 8. Diagnostic value of rectal temperature of African cattle of variable coat colour infected with trypanosomes and tick-borne infections.
    Magona JW, Walubengo J, Olaho-Mukani W, Jonsson NN, Eisler MC.
    Vet Parasitol; 2009 Mar 23; 160(3-4):301-5. PubMed ID: 19111994
    [Abstract] [Full Text] [Related]

  • 9. A longitudinal study of sero-conversion to tick-borne pathogens in smallholder dairy youngstock in Tanzania.
    Swai ES, French NP, Beauchamp G, Fitzpatrick JL, Bryant MJ, Kambarage D, Ogden NH.
    Vet Parasitol; 2005 Jul 15; 131(1-2):129-37. PubMed ID: 15936149
    [Abstract] [Full Text] [Related]

  • 10. Tick-borne parasitic diseases in cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems.
    L'Hostis M, Seegers H.
    Vet Res; 2002 Jul 15; 33(5):599-611. PubMed ID: 12387492
    [Abstract] [Full Text] [Related]

  • 11. Molecular identification of tick-borne pathogens in Nigerian ticks.
    Ogo NI, de Mera IG, Galindo RC, Okubanjo OO, Inuwa HM, Agbede RI, Torina A, Alongi A, Vicente J, Gortázar C, de la Fuente J.
    Vet Parasitol; 2012 Jul 06; 187(3-4):572-7. PubMed ID: 22326937
    [Abstract] [Full Text] [Related]

  • 12. Seasonal population dynamics of ticks, and its influence on infection transmission: a semi-discrete approach.
    Ghosh M, Pugliese A.
    Bull Math Biol; 2004 Nov 06; 66(6):1659-84. PubMed ID: 15522350
    [Abstract] [Full Text] [Related]

  • 13. The absence of clinical disease in cattle in communal grazing areas where farmers are changing from an intensive dipping programme to one of endemic stability to tick-borne diseases.
    Tice GA, Bryson NR, Stewart CG, Du Plessis B, De Wall DT.
    Onderstepoort J Vet Res; 1998 Sep 06; 65(3):169-75. PubMed ID: 9809321
    [Abstract] [Full Text] [Related]

  • 14. Acquisition and transmission of Theileria parva by vector tick, Rhipicephalus appendiculatus.
    Konnai S, Imamura S, Nakajima C, Witola WH, Yamada S, Simuunza M, Nambota A, Yasuda J, Ohashi K, Onuma M.
    Acta Trop; 2006 Aug 06; 99(1):34-41. PubMed ID: 16899209
    [Abstract] [Full Text] [Related]

  • 15. Tick-borne Great Island Virus: (II) Impact of age-related acquired immunity on transmission in a natural seabird host.
    Nunn MA, Barton TR, Wanless S, Hails RS, Harris MP, Nuttall PA.
    Parasitology; 2006 Feb 06; 132(Pt 2):241-53. PubMed ID: 16197591
    [Abstract] [Full Text] [Related]

  • 16. Ticks infesting cattle in Central Equatoria region of South Sudan.
    Marcellino WL, Julla II, Salih DA, El Hussein AR.
    Onderstepoort J Vet Res; 2011 Nov 15; 78(1):336. PubMed ID: 23327220
    [Abstract] [Full Text] [Related]

  • 17. Present status of tick-borne diseases in Sudan.
    El Hussein AR, Majid AM, Shawgi MH.
    Arch Inst Pasteur Tunis; 2004 Nov 15; 81(1-4):31-4. PubMed ID: 16929763
    [Abstract] [Full Text] [Related]

  • 18. [Ticks and tick borne pathogens in domestic animals in the Netherlands].
    Bodaan C, Nihof AM, Postigo M, Nieuwenhuijs H, Opsteegh M, Franssen L, Jebbink F, Jansen S, Jongejan F.
    Tijdschr Diergeneeskd; 2007 Jul 01; 132(13):517-23. PubMed ID: 17649748
    [No Abstract] [Full Text] [Related]

  • 19. Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: how to interpret the results of deer exclosure experiments.
    Pugliese A, Rosà R.
    Parasitology; 2008 Nov 01; 135(13):1531-44. PubMed ID: 18442427
    [Abstract] [Full Text] [Related]

  • 20. Disease at the wildlife-livestock interface: acaricide use on domestic cattle does not prevent transmission of a tick-borne pathogen with multiple hosts.
    Walker JG, Klein EY, Levin SA.
    Vet Parasitol; 2014 Jan 31; 199(3-4):206-14. PubMed ID: 24315187
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.