These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 12839758

  • 1. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM, Phelps CD, Young LY.
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [Abstract] [Full Text] [Related]

  • 2. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM, Young LY.
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [Abstract] [Full Text] [Related]

  • 3. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
    Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Réa A.
    Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
    So CM, Young LY.
    Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691
    [Abstract] [Full Text] [Related]

  • 7. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium.
    Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY.
    Appl Environ Microbiol; 2006 Jun; 72(6):4274-82. PubMed ID: 16751542
    [Abstract] [Full Text] [Related]

  • 8. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V, Cravo-Laureau C, Rontani JF, Cros M, Hirschler-Réa A.
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [Abstract] [Full Text] [Related]

  • 9. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA, Finnerty WR.
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [Abstract] [Full Text] [Related]

  • 10. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M, Kobayashi H, Iizuka H.
    Z Allg Mikrobiol; 1980 Oct; 20(7):449-57. PubMed ID: 7434793
    [Abstract] [Full Text] [Related]

  • 11. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach.
    Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ.
    Appl Environ Microbiol; 2013 Jul; 79(14):4282-93. PubMed ID: 23645199
    [Abstract] [Full Text] [Related]

  • 12. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.
    Wilkes H, Buckel W, Golding BT, Rabus R.
    J Mol Microbiol Biotechnol; 2016 Jul; 26(1-3):138-51. PubMed ID: 26959725
    [Abstract] [Full Text] [Related]

  • 13. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture.
    Davidova IA, Gieg LM, Nanny M, Kropp KG, Suflita JM.
    Appl Environ Microbiol; 2005 Dec; 71(12):8174-82. PubMed ID: 16332800
    [Abstract] [Full Text] [Related]

  • 14. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.
    Kropp KG, Davidova IA, Suflita JM.
    Appl Environ Microbiol; 2000 Dec; 66(12):5393-8. PubMed ID: 11097919
    [Abstract] [Full Text] [Related]

  • 15. Anaerobic Degradation of Non-Methane Alkanes by "Candidatus Methanoliparia" in Hydrocarbon Seeps of the Gulf of Mexico.
    Laso-Pérez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F, Smit NT, Pape T, Sahling H, Bohrmann G, Boetius A, Knittel K, Wegener G.
    mBio; 2019 Aug 20; 10(4):. PubMed ID: 31431553
    [Abstract] [Full Text] [Related]

  • 16. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes.
    Makula R, Finnerty WR.
    J Bacteriol; 1968 Jun 20; 95(6):2102-7. PubMed ID: 5669891
    [Abstract] [Full Text] [Related]

  • 17. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM, Young LY.
    Environ Toxicol Chem; 2001 Mar 20; 20(3):473-8. PubMed ID: 11349845
    [Abstract] [Full Text] [Related]

  • 18. Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium.
    Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F.
    Appl Environ Microbiol; 2003 Feb 20; 69(2):760-8. PubMed ID: 12570993
    [Abstract] [Full Text] [Related]

  • 19. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1.
    Park MO.
    J Bacteriol; 2005 Feb 20; 187(4):1426-9. PubMed ID: 15687207
    [Abstract] [Full Text] [Related]

  • 20. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M, Shapiro J.
    J Bacteriol; 1975 Apr 20; 122(1):93-8. PubMed ID: 804473
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.