These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 12839864

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Lipid-lowering (hetero)aromatic tetrahydro-1,4-oxazine derivatives with antioxidant and squalene synthase inhibitory activity.
    Kourounakis AP, Charitos C, Rekka EA, Kourounakis PN.
    J Med Chem; 2008 Sep 25; 51(18):5861-5. PubMed ID: 18754614
    [Abstract] [Full Text] [Related]

  • 24. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia.
    Seiki S, Frishman WH.
    Cardiol Rev; 2009 Sep 25; 17(2):70-6. PubMed ID: 19367148
    [Abstract] [Full Text] [Related]

  • 25. A high-cholesterol, n-3 polyunsaturated fatty acid diet causes different responses in rats and hamsters.
    Lin MH, Lu SC, Huang PC, Liu YC, Liu SY.
    Ann Nutr Metab; 2005 Sep 25; 49(6):386-91. PubMed ID: 16219990
    [Abstract] [Full Text] [Related]

  • 26. Lipid lowering effects of pravastatin in common marmosets.
    Miyazaki A, Koga T.
    Arzneimittelforschung; 1998 Feb 25; 48(2):154-60. PubMed ID: 9541726
    [Abstract] [Full Text] [Related]

  • 27. The treatment of dyslipidemia--what's left in the pipeline?
    Rau O, Zettl H, Popescu L, Steinhilber D, Schubert-Zsilavecz M.
    ChemMedChem; 2008 Feb 25; 3(2):206-21. PubMed ID: 17963209
    [Abstract] [Full Text] [Related]

  • 28. Squalene synthase inhibitors : clinical pharmacology and cholesterol-lowering potential.
    Charlton-Menys V, Durrington PN.
    Drugs; 2007 Feb 25; 67(1):11-6. PubMed ID: 17209661
    [Abstract] [Full Text] [Related]

  • 29. Hypolipidemic activity of 18beta-glycyrrhetinic acid on streptozotocin-induced diabetic rats.
    Kalaiarasi P, Kaviarasan K, Pugalendi KV.
    Eur J Pharmacol; 2009 Jun 10; 612(1-3):93-7. PubMed ID: 19361497
    [Abstract] [Full Text] [Related]

  • 30. Enhanced cellular uptake of remnant high-density lipoprotein particles: a mechanism for high-density lipoprotein lowering in insulin resistance and hypertriglyceridemia.
    Xiao C, Watanabe T, Zhang Y, Trigatti B, Szeto L, Connelly PW, Marcovina S, Vaisar T, Heinecke JW, Lewis GF.
    Circ Res; 2008 Jul 18; 103(2):159-66. PubMed ID: 18556574
    [Abstract] [Full Text] [Related]

  • 31. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.
    Flint OP, Masters BA, Gregg RE, Durham SK.
    Toxicol Appl Pharmacol; 1997 Jul 18; 145(1):91-8. PubMed ID: 9221828
    [Abstract] [Full Text] [Related]

  • 32. Emerging lipid-lowering drugs: squalene synthase inhibitors.
    Elsayed RK, Evans JD.
    Expert Opin Emerg Drugs; 2008 Jun 18; 13(2):309-22. PubMed ID: 18537523
    [Abstract] [Full Text] [Related]

  • 33. Effect of ER-27856, a novel squalene synthase inhibitor, on plasma cholesterol in rhesus monkeys: comparison with 3-hydroxy-3-methylglutaryl-coa reductase inhibitors.
    Hiyoshi H, Yanagimachi M, Ito M, Ohtsuka I, Yoshida I, Saeki T, Tanaka H.
    J Lipid Res; 2000 Jul 18; 41(7):1136-44. PubMed ID: 10884296
    [Abstract] [Full Text] [Related]

  • 34. Experimental model of escape phenomenon in hamsters and the effectiveness of YM-53601 in the model.
    Ugawa T, Kakuta H, Moritani H, Shikama H.
    Br J Pharmacol; 2002 Mar 18; 135(6):1572-8. PubMed ID: 11906972
    [Abstract] [Full Text] [Related]

  • 35. Effects of D-003, a mixture of long-chain aliphatic primary acids, fluvastatin and the combined therapy of D-003 plus fluvastatin on the lipid profile of normocholesterolemic rabbits.
    Mendoza S, Gamez R, Mas R, Goicochea E.
    Int J Tissue React; 2003 Mar 18; 25(3):81-9. PubMed ID: 14756189
    [Abstract] [Full Text] [Related]

  • 36. Effects of increasing doses of atorvastatin on the atherogenic lipid subclasses commonly associated with hypertriglyceridemia.
    Karalis DG, Ishisaka DY, Luo D, Ntanios F, Wun CC.
    Am J Cardiol; 2007 Aug 01; 100(3):445-9. PubMed ID: 17659926
    [Abstract] [Full Text] [Related]

  • 37. New lipid-lowering agents acting on LDL receptors.
    Scharnagl H, März W.
    Curr Top Med Chem; 2005 Aug 01; 5(3):233-42. PubMed ID: 15857307
    [Abstract] [Full Text] [Related]

  • 38. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes.
    Hiyoshi H, Yanagimachi M, Ito M, Yasuda N, Okada T, Ikuta H, Shinmyo D, Tanaka K, Kurusu N, Yoshida I, Abe S, Saeki T, Tanaka H.
    J Lipid Res; 2003 Jan 01; 44(1):128-35. PubMed ID: 12518031
    [Abstract] [Full Text] [Related]

  • 39. Inhibition of squalene synthase upregulates PCSK9 expression in rat liver.
    Bedi M, Niesen M, Lopez D.
    Arch Biochem Biophys; 2008 Feb 15; 470(2):116-9. PubMed ID: 18054775
    [Abstract] [Full Text] [Related]

  • 40. Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors.
    Ichikawa M, Yokomizo A, Itoh M, Usui H, Shimizu H, Suzuki M, Terayama K, Kanda A, Sugita K.
    Bioorg Med Chem; 2011 Mar 15; 19(6):1930-49. PubMed ID: 21353782
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.