These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 12847108
1. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. Déléris P, Bacqueville D, Gayral S, Carrez L, Salles JP, Perret B, Breton-Douillon M. J Biol Chem; 2003 Oct 03; 278(40):38884-91. PubMed ID: 12847108 [Abstract] [Full Text] [Related]
2. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG. J Immunol; 2002 Nov 15; 169(10):5441-50. PubMed ID: 12421919 [Abstract] [Full Text] [Related]
3. 5' phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM, Moodie S, Stokoe D. Mol Cell Biol; 2000 Sep 15; 20(18):6860-71. PubMed ID: 10958682 [Abstract] [Full Text] [Related]
4. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. Maehama T, Dixon JE. J Biol Chem; 1998 May 29; 273(22):13375-8. PubMed ID: 9593664 [Abstract] [Full Text] [Related]
5. PTEN and Other PtdIns(3,4,5)P3 Lipid Phosphatases in Breast Cancer. Csolle MP, Ooms LM, Papa A, Mitchell CA. Int J Mol Sci; 2020 Dec 02; 21(23):. PubMed ID: 33276499 [Abstract] [Full Text] [Related]
6. Phosphoinositide phosphatases: just as important as the kinases. Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Subcell Biochem; 2012 Dec 02; 58():215-79. PubMed ID: 22403078 [Abstract] [Full Text] [Related]
7. Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Elong Edimo W, Derua R, Janssens V, Nakamura T, Vanderwinden JM, Waelkens E, Erneux C. Biochem J; 2011 Nov 01; 439(3):391-401. PubMed ID: 21770892 [Abstract] [Full Text] [Related]
8. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP, Gutkind JS, Li W. Oncogene; 2002 Aug 08; 21(34):5289-300. PubMed ID: 12149650 [Abstract] [Full Text] [Related]
9. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A, Lucocq J, Downes CP. J Cell Sci; 2006 Dec 15; 119(Pt 24):5160-8. PubMed ID: 17158918 [Abstract] [Full Text] [Related]
10. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Eramo MJ, Mitchell CA. Biochem Soc Trans; 2016 Feb 15; 44(1):240-52. PubMed ID: 26862211 [Abstract] [Full Text] [Related]
11. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Rodgers SJ, Ferguson DT, Mitchell CA, Ooms LM. Biosci Rep; 2017 Feb 28; 37(1):. PubMed ID: 28082369 [Abstract] [Full Text] [Related]
12. An SH2 domain-containing 5' inositolphosphatase inhibits insulin-induced GLUT4 translocation and growth factor-induced actin filament rearrangement. Vollenweider P, Clodi M, Martin SS, Imamura T, Kavanaugh WM, Olefsky JM. Mol Cell Biol; 1999 Feb 28; 19(2):1081-91. PubMed ID: 9891043 [Abstract] [Full Text] [Related]
13. The INPP4B paradox: Like PTEN, but different. Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. Adv Biol Regul; 2021 Dec 28; 82():100817. PubMed ID: 34216856 [Abstract] [Full Text] [Related]
14. [Inhibitory effect of lentiviral vector-mediated SHIP gene transfection on proliferation of leukemia K562 cells and PI3K/Akt pathway regulation]. Yang L, Luo JM, Liu XJ, Wen SP, Du XY, Yao L. Ai Zheng; 2009 Apr 28; 28(4):366-72. PubMed ID: 19622295 [Abstract] [Full Text] [Related]
15. PTEN M-CBR3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Evidence for Ins(1,3,4,5,6)P5 as a proliferative signal. Orchiston EA, Bennett D, Leslie NR, Clarke RG, Winward L, Downes CP, Safrany ST. J Biol Chem; 2004 Jan 09; 279(2):1116-22. PubMed ID: 14561749 [Abstract] [Full Text] [Related]
16. SHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V: localization of SHIP-2 to the activated platelet actin cytoskeleton. Dyson JM, Munday AD, Kong AM, Huysmans RD, Matzaris M, Layton MJ, Nandurkar HH, Berndt MC, Mitchell CA. Blood; 2003 Aug 01; 102(3):940-8. PubMed ID: 12676785 [Abstract] [Full Text] [Related]
17. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity. Wada T, Sasaoka T, Funaki M, Hori H, Murakami S, Ishiki M, Haruta T, Asano T, Ogawa W, Ishihara H, Kobayashi M. Mol Cell Biol; 2001 Mar 01; 21(5):1633-46. PubMed ID: 11238900 [Abstract] [Full Text] [Related]
18. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity. Vandeput F, Backers K, Villeret V, Pesesse X, Erneux C. Cell Signal; 2006 Dec 01; 18(12):2193-9. PubMed ID: 16824732 [Abstract] [Full Text] [Related]
19. The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Steelman LS, Bertrand FE, McCubrey JA. Expert Opin Ther Targets; 2004 Dec 01; 8(6):537-50. PubMed ID: 15584861 [Abstract] [Full Text] [Related]
20. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Erneux C, Govaerts C, Communi D, Pesesse X. Biochim Biophys Acta; 1998 Dec 08; 1436(1-2):185-99. PubMed ID: 9838104 [Abstract] [Full Text] [Related] Page: [Next] [New Search]