These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


840 related items for PubMed ID: 12852173

  • 21. Current progress and challenges in crop genetic transformation.
    Anjanappa RB, Gruissem W.
    J Plant Physiol; 2021 Jun; 261():153411. PubMed ID: 33872932
    [Abstract] [Full Text] [Related]

  • 22. Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants.
    Imani J, Kogel KH.
    Methods Mol Biol; 2020 Jun; 2124():281-294. PubMed ID: 32277460
    [Abstract] [Full Text] [Related]

  • 23. Advancing Crop Transformation in the Era of Genome Editing.
    Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN.
    Plant Cell; 2016 Jul; 28(7):1510-20. PubMed ID: 27335450
    [Abstract] [Full Text] [Related]

  • 24. Finding new ways to fight plant diseases.
    Moffat AS.
    Science; 2001 Jun 22; 292(5525):2270-3. PubMed ID: 11423646
    [No Abstract] [Full Text] [Related]

  • 25. Fundamental discoveries and simple recombination between circular plasmid DNAs led to widespread use of Agrobacterium tumefaciens as a generalized vector for plant genetic engineering.
    Zambryski P.
    Int J Dev Biol; 2013 Jun 22; 57(6-8):449-52. PubMed ID: 24166427
    [Abstract] [Full Text] [Related]

  • 26. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.
    Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A.
    Biotechnol Adv; 2010 Jun 22; 28(6):747-56. PubMed ID: 20685387
    [Abstract] [Full Text] [Related]

  • 27. Generating high-yielding varieties by genetic manipulation of plant architecture.
    Sakamoto T, Matsuoka M.
    Curr Opin Biotechnol; 2004 Apr 22; 15(2):144-7. PubMed ID: 15081053
    [Abstract] [Full Text] [Related]

  • 28. Characterization of a plant-transformation-ready large-insert BIBAC library of Arabidopsis and bombardment transformation of a large-insert BIBAC of the library into tobacco.
    Chang YL, Chuang HW, Meksem K, Wu FC, Chang CY, Zhang M, Zhang HB.
    Genome; 2011 Jun 22; 54(6):437-47. PubMed ID: 21585277
    [Abstract] [Full Text] [Related]

  • 29. Crop transformation and the challenge to increase yield potential.
    Sinclair TR, Purcell LC, Sneller CH.
    Trends Plant Sci; 2004 Feb 22; 9(2):70-5. PubMed ID: 15102372
    [Abstract] [Full Text] [Related]

  • 30. Novel and potential application of cryopreservation to plant genetic transformation.
    Wang B, Zhang Z, Yin Z, Feng C, Wang Q.
    Biotechnol Adv; 2012 Feb 22; 30(3):604-12. PubMed ID: 22079800
    [Abstract] [Full Text] [Related]

  • 31. Genetically modified crops for biomass increase. Genes and strategies.
    Rojas CA, Hemerly AS, Ferreira PC.
    GM Crops; 2010 Feb 22; 1(3):137-42. PubMed ID: 21865869
    [Abstract] [Full Text] [Related]

  • 32. Biotechnology tools in agriculture: recent patents involving soybean, corn and sugarcane.
    Hansen D, Nakahata AM, Haraguchi M, Alonso A.
    Recent Pat Food Nutr Agric; 2011 May 22; 3(2):115-22. PubMed ID: 21226663
    [Abstract] [Full Text] [Related]

  • 33. Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome.
    Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA.
    Plant J; 2011 Dec 22; 68(5):929-37. PubMed ID: 21848915
    [Abstract] [Full Text] [Related]

  • 34. Targeted DNA insertion in plants.
    Dong OX, Ronald PC.
    Proc Natl Acad Sci U S A; 2021 Jun 01; 118(22):. PubMed ID: 34050013
    [Abstract] [Full Text] [Related]

  • 35. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.
    Wally O, Punja ZK.
    GM Crops; 2010 Jun 01; 1(4):199-206. PubMed ID: 21844674
    [Abstract] [Full Text] [Related]

  • 36. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.
    Joyce P, Hermann S, O'Connell A, Dinh Q, Shumbe L, Lakshmanan P.
    Plant Biotechnol J; 2014 May 01; 12(4):411-24. PubMed ID: 24330327
    [Abstract] [Full Text] [Related]

  • 37. Phenomics--technologies to relieve the phenotyping bottleneck.
    Furbank RT, Tester M.
    Trends Plant Sci; 2011 Dec 01; 16(12):635-44. PubMed ID: 22074787
    [Abstract] [Full Text] [Related]

  • 38. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?
    Good AG, Shrawat AK, Muench DG.
    Trends Plant Sci; 2004 Dec 01; 9(12):597-605. PubMed ID: 15564127
    [Abstract] [Full Text] [Related]

  • 39. Canadian regulatory perspectives on genome engineered crops.
    Smyth SJ.
    GM Crops Food; 2017 Jan 02; 8(1):35-43. PubMed ID: 27858499
    [Abstract] [Full Text] [Related]

  • 40. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control.
    Gottula J, Fuchs M.
    Adv Virus Res; 2009 Jan 02; 75():161-83. PubMed ID: 20109666
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 42.