These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 1285517

  • 21. New diagnostic method for pulmonary allograft rejection by measurement of bronchial mucosal blood flow.
    Tanabe H, Takao M, Hiraiwa T, Mizutani T, Yada I, Namikawa S, Yuasa H, Kusagawa M.
    J Heart Lung Transplant; 1991; 10(6):968-74. PubMed ID: 1756163
    [Abstract] [Full Text] [Related]

  • 22. Pulmonary and bronchial circulatory responses to segmental lung injury.
    Lakshminarayan S, Bernard S, Polissar NL, Glenny RW.
    J Appl Physiol (1985); 1999 Nov; 87(5):1931-6. PubMed ID: 10562639
    [Abstract] [Full Text] [Related]

  • 23. High-frequency oscillation compared with standard ventilation in pulmonary injury model.
    Thompson WK, Marchak BE, Froese AB, Bryan AC.
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Mar; 52(3):543-8. PubMed ID: 7040322
    [Abstract] [Full Text] [Related]

  • 24. Acute increases in anastomotic bronchial systemic to pulmonary blood flow due to generalized lung injury.
    Lakshminarayan S, Jindal SK, Kirk W, Butler J.
    J Appl Physiol (1985); 1987 Jun; 62(6):2358-61. PubMed ID: 3301787
    [Abstract] [Full Text] [Related]

  • 25. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury.
    Hering R, Viehöfer A, Zinserling J, Wrigge H, Kreyer S, Berg A, Minor T, Putensen C.
    Anesthesiology; 2003 Nov; 99(5):1137-44. PubMed ID: 14576551
    [Abstract] [Full Text] [Related]

  • 26. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury.
    Nam AJ, Brower RG, Fessler HE, Simon BA.
    Am J Respir Crit Care Med; 2000 Jun; 161(6):1797-804. PubMed ID: 10852747
    [Abstract] [Full Text] [Related]

  • 27. Positive end-expiratory pressure decreases bronchial blood flow in the dog.
    Baile EM, Albert RK, Kirk W, Lakshaminarayan S, Wiggs BJ, Paré PD.
    J Appl Physiol Respir Environ Exerc Physiol; 1984 May; 56(5):1289-93. PubMed ID: 6373694
    [Abstract] [Full Text] [Related]

  • 28. Effect of negative-pressure ventilation on lung water in permeability pulmonary edema.
    Skaburskis M, Michel RP, Gatensby A, Zidulka A.
    J Appl Physiol (1985); 1989 May; 66(5):2223-30. PubMed ID: 2501278
    [Abstract] [Full Text] [Related]

  • 29. Abnormalities in organ blood flow and its distribution during positive end-expiratory pressure.
    Manny J, Justice R, Hechtman HB.
    Surgery; 1979 Apr; 85(4):425-32. PubMed ID: 373148
    [Abstract] [Full Text] [Related]

  • 30. Significance of measurements of bronchial mucosal blood flow for the monitoring of acute rejection of transplanted lungs.
    Takao M, Katayama Y, Onoda K, Tanabe H, Hiraiwa T, Mizutani T, Yada I, Namikawa S, Yuasa H, Kusagawa M.
    Transplantation; 1990 Aug; 50(2):345-8. PubMed ID: 2200177
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Specific compliance and gas exchange during high-frequency oscillatory ventilation.
    Wood B, Karna P, Adams A.
    Crit Care Med; 2002 Jul; 30(7):1523-7. PubMed ID: 12130973
    [Abstract] [Full Text] [Related]

  • 33. Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation.
    Bond DM, Froese AB.
    Crit Care Med; 1993 Mar; 21(3):402-12. PubMed ID: 8440111
    [Abstract] [Full Text] [Related]

  • 34. Airway pressure release ventilation in a neonatal lamb model of acute lung injury.
    Martin LD, Wetzel RC, Bilenki AL.
    Crit Care Med; 1991 Mar; 19(3):373-8. PubMed ID: 1999099
    [Abstract] [Full Text] [Related]

  • 35. Optimal release time during airway pressure release ventilation in neonatal sheep.
    Martin LD, Wetzel RC.
    Crit Care Med; 1994 Mar; 22(3):486-93. PubMed ID: 8125000
    [Abstract] [Full Text] [Related]

  • 36. Effects of spontaneous breathing during airway pressure release ventilation on cerebral and spinal cord perfusion in experimental acute lung injury.
    Kreyer S, Putensen C, Berg A, Soehle M, Muders T, Wrigge H, Zinserling J, Hering R.
    J Neurosurg Anesthesiol; 2010 Oct; 22(4):323-9. PubMed ID: 20622682
    [Abstract] [Full Text] [Related]

  • 37. Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs.
    Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC.
    J Appl Physiol (1985); 1990 Dec; 69(6):2057-61. PubMed ID: 2077000
    [Abstract] [Full Text] [Related]

  • 38. A functional and morphologic analysis of pressure-controlled inverse ratio ventilation in oleic acid-induced lung injury.
    Ludwigs U, Klingstedt C, Baehrendtz S, Wegenius G, Hedenstierna G.
    Chest; 1994 Sep; 106(3):925-31. PubMed ID: 8082379
    [Abstract] [Full Text] [Related]

  • 39. Functional anatomy of bronchial veins.
    Charan NB, Thompson WH, Carvalho P.
    Pulm Pharmacol Ther; 2007 Sep; 20(2):100-3. PubMed ID: 16807022
    [Abstract] [Full Text] [Related]

  • 40. Pulmonary and bronchial circulations: contributions to heat and water exchange in isolated lungs.
    Serikov VB, Fleming NW.
    J Appl Physiol (1985); 2001 Nov; 91(5):1977-85. PubMed ID: 11641333
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.