These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 128552

  • 21. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR, St Martin EJ.
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [Abstract] [Full Text] [Related]

  • 22. Potassium uniport and ATP synthesis in Halobacterium halobium.
    Wagner G, Hartmann R, Oesterhelt D.
    Eur J Biochem; 1978 Aug 15; 89(1):169-79. PubMed ID: 29755
    [Abstract] [Full Text] [Related]

  • 23. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y, Kin E, Tanaka Y.
    J Biochem; 1975 Jul 15; 78(1):165-79. PubMed ID: 1104599
    [Abstract] [Full Text] [Related]

  • 24. ATP synthesis in cell envelope vesicles of Halobacterium halobium driven by membrane potential and/or base-acid transition.
    Mukohata Y, Isoyama M, Fuke A.
    J Biochem; 1986 Jan 15; 99(1):1-8. PubMed ID: 3957892
    [Abstract] [Full Text] [Related]

  • 25. Halorhodopsin is a light-driven chloride pump.
    Schobert B, Lanyi JK.
    J Biol Chem; 1982 Sep 10; 257(17):10306-13. PubMed ID: 7107607
    [Abstract] [Full Text] [Related]

  • 26. Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP.
    Fraimow HS, Greenman JB, Leviton IM, Dougherty TJ, Miller MH.
    J Bacteriol; 1991 May 10; 173(9):2800-8. PubMed ID: 2019557
    [Abstract] [Full Text] [Related]

  • 27. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles.
    Doddema HJ, van der Drift C, Vogels GD, Veenhuis M.
    J Bacteriol; 1979 Dec 10; 140(3):1081-9. PubMed ID: 160408
    [Abstract] [Full Text] [Related]

  • 28. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS, Strickland KP.
    Biochim Biophys Acta; 1976 May 21; 433(3):564-82. PubMed ID: 132192
    [Abstract] [Full Text] [Related]

  • 29. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus.
    Dibrov PA, Skulachev VP, Sokolov MV, Verkhovskaya ML.
    FEBS Lett; 1988 Jun 20; 233(2):355-8. PubMed ID: 2968282
    [Abstract] [Full Text] [Related]

  • 30. Primary and secondary chloride transport in Halobacterium halobium.
    Duschl A, Wagner G.
    J Bacteriol; 1986 Nov 20; 168(2):548-52. PubMed ID: 3782015
    [Abstract] [Full Text] [Related]

  • 31. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP, Bragg PD.
    Biochim Biophys Acta; 1976 Mar 12; 423(3):450-61. PubMed ID: 130924
    [Abstract] [Full Text] [Related]

  • 32. Light-activated amino acid transport in Halobacterium halobium envelope vesicles.
    MacDonald RE, Lanyi JK.
    Fed Proc; 1977 May 12; 36(6):1828-32. PubMed ID: 15878
    [Abstract] [Full Text] [Related]

  • 33. Stimulation of amino acid transport in Saccharomyces cerevisiae by metabolic inhibitors.
    Horák J, Kotyk A, Ríhová L.
    Folia Microbiol (Praha); 1978 May 12; 23(4):286-91. PubMed ID: 357269
    [Abstract] [Full Text] [Related]

  • 34. Phosphate transport in Halobacterium halobium depends on cellular ATP levels.
    Zoratti M, Lanyi JK.
    J Bacteriol; 1987 Dec 12; 169(12):5755-60. PubMed ID: 3680177
    [Abstract] [Full Text] [Related]

  • 35. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA, Lazarova RL, Skulachev VP, Verkhovskaya ML.
    Biochim Biophys Acta; 1986 Jul 23; 850(3):458-65. PubMed ID: 2942186
    [Abstract] [Full Text] [Related]

  • 36. Coupling of energy to folate transport in Lactobacillus casei.
    Henderson GB, Zevely EM, Huennekens FM.
    J Bacteriol; 1979 Aug 23; 139(2):552-9. PubMed ID: 110791
    [Abstract] [Full Text] [Related]

  • 37. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J, Simonis W.
    J Bacteriol; 1982 Jul 23; 151(1):229-36. PubMed ID: 6806240
    [Abstract] [Full Text] [Related]

  • 38. Light-driven primary sodium ion transport in Halobacterium halobium membranes.
    Lanyi JK.
    J Supramol Struct; 1980 Jul 23; 13(1):83-92. PubMed ID: 7442256
    [Abstract] [Full Text] [Related]

  • 39. Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679.
    Okereke A, Montville TJ.
    Appl Environ Microbiol; 1992 Aug 23; 58(8):2463-7. PubMed ID: 1325140
    [Abstract] [Full Text] [Related]

  • 40. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847).
    Mukohata Y, Kaji Y.
    Arch Biochem Biophys; 1981 Jan 23; 206(1):72-6. PubMed ID: 6260033
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.